
REPORT OF THE
DOD JOINT SERVICE TASK FORCE

ON SOFTWARE PROBLEMS

~~JAN 13 1983

LAA

Ii~....6ved

w Department of Defend .

83 01 13 014:

Unclassified

Stn ?,MT C.ASSIPICAO@N OP ?"IS PA 4 ,Mb 00.. oft"

REPORT DOCIMENTATION PAGE @0o RMPOTMGnoS S1. IlrlQC~r si eM61N "J VT AGGCCUJSOM 00, !L MILCIICHfT' CATALmOG MUMOliIA

A. 1I'LA (A IU dO00106T 4 091400 COVENLO

Report of the DoD Task Force on pril 23-July 30,1982

Software Problems 41. 1 o, o o rft , wu.

7. 4DTawIt I. CONTRA^CTr GRANT NUNlasaws

The DoD Joint Service Task Force
on Software Problems

9. P4tRFnNG106 OMNGAIZATION NAME AND AOORESS . =SAM CMEN1. ROJECT. TASIU
WA[&•Ua UNIV NUESENS

It. UNYNOLIR- O 0 0 NAM AuO AOO*R.S It. MCPORT OAl

Deputy Under Secretary of Defense July 30, 1982
Research & Advanced Technology

14. L.NOM =OI aActw iGE SSOild~lemE bm C woWM. Off. I. SECUNITY GLAS e(d We opma)

Unclassified

NL. WSTIUUTION STATAMeNr (od Me. lhpev

Unrestricted z'', h c u ien approved

-~'~i~l~:~ae cnd Sale; its
:" Tib'jtofl s Unlimited.

1. mSTNITION STATZINMISR (W Me SOO gMCO d Ka 8m0 .0 If "a m bm ov)

Unrestricted r

U. SUPqt.EMER TARY N*OTKS

IM REF WORMS tC" We~v. '"ee "4f asin... M OW ~O orS .No* WnIrAcquisition, change, embedded computer systems, exper-

tise, initiatives, life cycle, management, military
supremacy, software, software problems, weapon systems

2L AMTWAC7 (CAW" 400 .. Pewe "A 0i -0000M 4" M"Nf 6"e

---)The opportunities and problems posed by computer soft-
ware embedded in DoD weapon systems were investigated
by a joint Service task force. Existing studies were
combined with the observations of DoD project managers
by the software experienced task force members.

DO," 1473 Unclassified

SCCUR'Y CLAMSPICATIO"N OP TNIS PAGE gin.. Owm.e.m

..

Z.. 7r-T)a. 77

* MILSTD _87A
31 January 1973

Unclassified
53525N? CLAWIFICA-112M 01F TWOS POWWE1U" DA &ae.

The task force concluded that software represents an
important opportunity in regard to the military mission
Further, it was concluded that technological excellenct
in software is an important factor in maintaining U.S.
military superiority, but that the many problems facinc
DoD in software endangers this superiority.

Therefore, it is recommended that the DoD take a lead-
ership role in establishing an embedded computer soft-
ware initiative with strong. joint Service cooperation
and which includes both academia and industry aswill-
ing participants. The initiatives should address
acquisition and management practices, technology R&D
and utilization, and development and use of expertise.

RE: Distribution Unrestricted

Document is unlimited per Ms. June Ludwig,

DUSDR&AT/Ada Joint Program Office

Accession For

'S GA&I

Unclassified

SCUMirV CLAS.I"g&Il OP TWAs P &W=O- G8

- .

-1-

S:'

REPORT OF THE
DOD JOINT SERVICE TASK FORCE

ON SOFTWARE PROBLEMS

Department of Defense

'S.

July 30,1982

The DoD Joint Service Task Force on Software Problems
was formed at the direction of the Deputy Under Secretary
of Defense for Research and Advanced Technology with su.pport
from the Assistant ,*ncretary of the Army (RD&A), the
Assistant Secretary of the Navy (RESS), and the Assistant
Secretary of the Air Force (RD&L) to identify the problems
and opportunities posed by the use of software in computers
embedded in DoD weapon systems. This document is the final
report of the task force.

;!.'T'

....

The DoD representatives on the task force were:

0 Lt. Col. Larry E. Druffel, USAF (Chairman)
Director, Ada Joint Program Office
Suite 1210
801 N. Randolph Street
Arlington, Virginia 22203

o Mr. Joseph E. Kernan (Army Representative)
Chief, Software Technology Development Division
CENTACS, CECOM, Fort Monmouth, New Jersey

o LCDR Kathleen K. Paige, USN (Navy Representative)
Deputy, AN/UYK-43 Acquisition Project
Naval Sea Systems Command (PMS 408), Washington, D. C.

o Capt. William A. Riski, USAF (Air Force Representative)
Digital Systems Engineer
HQ AFLC/LOEC, Wright-Patterson AFB, Ohio

Support contractors to the task force were:

o Mr. Bufford D. Farmer (Air Force support contractor)
Engineering Office Site Manager
TRW Defense Systems Group
Warner-Robins, Georgia

o Mr. Andrew B. Ferrentino (Navy support contractor)
Vice-President, Software A&E
Arlington, Virginia

o Mr. J. David E. Gumula (Navy support contractor)
Senior Staff, Software A&E
Arlington, Virginia

o Mr. Samuel Levine (Army support contractor)
Senior Scientist, Computer Science Corp.
Red Bank, New Jersey

o Dr. Richard J. Sylvester (Air Force support contractor)
President, P/M Group
Systems Productivity & Management Corp.
Dayton, Ohio

N.

m " ' " , -. " - " . . ' . -' . " • •• . - , - - - . -.

-7.-T

EXECUTIVE SUMMARY

Computer software has become an important component of
2- modern weapon systems. It integrates and controls many of

the hardware components and provides much of the functional
capability of a weapon system. Software has bean elevated
to this prominent role because of its flexibility to change
and relatively low replic7ation cost when compared to hardware.
It is the preferred means of adding capability to weapon sys-
tems and of reacting quickly to new enemy threats.

Given the prominence of software in DoD's weapon systems,
it is imperative that the DoD exploit this important technology.
There is a danger that the U.S. military mission can be ad-
versely affected if DoD software development and support is
inefficient. There is a perception that such a danger exists
and that positive action must be taken to improve the state of
software practice in DoD. No plan of action can be effective
unless the DoD problems in exploiting software are well under-
stood. Therefore, the DoD Joint Service Task Force on Software
Problems was formed at the direction of the Deputy Under Secre-
tary of Defense for Research and Advanced Technology to identify
the problems and the opportunities posed by the use of software
in computers embedded in weapon systems.

b The task force was composed of DoD representatives with
broad experience covering most aspects of DoD software and

. systems development and support. Recognizing the complexity
of the issues to be addressed and the limited time to complete
the task (60 days), there was no attempt to research new issues
and produce a definitive study. Rather, the task force reviewed
the numerous reports written by other study groups, relied
heavily on the experience of its membership, and sought counsel
with others who are currently involved in the development or
support of software for the DoD.

This report reinforces the view that there are many diffi-
culties facing DoD in software. These difficulties span the
acquisition process, the development and support environment,
characteristics of deployed software, and computer professional
resources. The difficulties are categorized in an extensive

*but not all-inclusive problem taxonomy. Many examples are
cited illustrating that the problems are severely affecting
the development cost and deployment schedules of scftware, as
well as the utility of the deployed weapon systems.

S.

A .- * .

The vitality of the technology base for software in DoD,
industry, and academia is directly related to continued U.S.
military supremacy. It is generally acknowledged that the
U.S. is the world leader in computer technology. Loss of this
leadership role may cause a similar reversal in military super-
iority due to the prominent role the embedded computer and its
saftwar# play in weapon systems. Several countries - Japan,
Britain, and France - have announced government-sponsored
initiatives which will improve their software technology base.
At least one initiative, the Japanese, is aimed at wresting
computer technology leadership from the U.S. In the U.S. there
is a growing shortage of computer professionals, which is not
only impacting the U.S. software production capability, but is
eausing an erosion of the academic research and education base
as professors are being lured into well-paid industry jobs.
The result of this trend is a long term erosion of the U.S.
software technological and production base.

Based on its review of the problems and their impact on
the military mission, the task force concluded the following:

a. software represents an important opportunity
in regard to the U.S. military mission,

b. the state of DoD software development is
adversely affecting the military mission,

c. the problems in software are many and inter-
related precluding a simple solution,

d. technological excellence in software is an
important factor in maintaining U.S. military
superiority, and

e. DoD must take a leadership role in solving
the problems in software and in averting the
erosion of the technology base.

The DoD has a number of current initiatives designed
to improve the development and support process. The Ada
program is an example of a DoD-level initiative that will
improve many aspects of embedded computer software. Each of
the Services also has several initiatives aimed at improving
software development and support. These activities can be
expected to yield steady improvements in the technology
base and in the ability to manage software, but the DoD needs
a substantial improvement in the state-of-the-practice which

ii "

"" " " . ," . " . . " " " .*'. " "./ ; t . " _ " . . ' . " . , :.: ." . . , ..,2. " . . . ,

will not result from current initiatives alone. Therefore,
the task force recommends that a DoD-level software initiative
be established for embedded computer software with strong
joint Service cooperation in the spirit of the Ada and VHSIC
programs. This initiative should address three major areas:

a. refinement of software acquisition and manage-
ment practices,

b. stimulation of technology research, development,
and utilization, and

c. development and use of expertise of technical
and management software professionals.

The necessary technology base and management practices cross
Service lines and the problems are bigger than any individual
Service initiatives currently address. A plan of action should
be developed which embodies a broad and bold approach and which
includes both academia and industry as willing participants.

i:iii

Table of Contents

Page

1. Introduction 1

1.1 Background 2

1.2 The Relation of Software to the 4
U.S. Military Mission

1.3 The Threat to U.S. Leadership 7

2. Fundamental Difficulties with Software 10

2.1 The Life Cycle of Software 10

2.1.1 Requirements Definition and Analysis 11

2.1.2 Management of Life Cycle Activities 12

2.1.3 Software Acquisition 14

2.1.4 Software Product Assurance 15

2.1.5 Transitions in the Life Cycle 15

2.2 The Support Environment 16

2.2.1 Disciplined Methods 16

2.2.2 Development and Support Tools 17

2.2.3 Reinvention in Software 18

2.2.4 Capital Investment 19

2.3 The Software Product 20

2.3.1 Software Utility 20

2.3.2 Software Metrics 21

2.3.? Design Attributes 22

2.3.4 Documentation 23

iv

" . " J ,3 "- " " " " " " " ." . . .". ! ," - _ " % - . •

*..o . - .- . " - _ _.

Page

2.4 Embedded Computer Software Professionals 24

2.4.1 Embedded Computer Software Professional 24
Requirements

2.4.2 Availability of Qualified Professionals 25

2.4.3 Incentives 26

3. Conclusions 28

4. Existing Initiatives 30

5. Recommendations 32

Appendix A - Problems Taxonomy and Descriptions

Appendix B - Previous Studies on Software Problems

Appendix C - Case Studies

Appendix D - Current Initiatives Descriptions

v

ma

(-71

1i. Introduction

This report documents the findings of the DoD Joint
Service Task Force on Software Problems. The task force
was chartered by Dr. Edith W. Martin, Deputy Under Secretary
of Defense, Research and Advanced Technology with support
from the Assistant Secretary of the Army (RD&A), the Assistant
Secretary of the Navy (RE&S), and the Assistant Secretary of
the Air Force (RD&L) to review the problems in DoD embedded
computer software and to assess the impact these prob'lms
have on the U.S. military mission. The task force wz
created because of the perceived need to take positii
action to improve the state of software practice for
systems. Three Defense Science Board studies within I
past year have identified software development and st --t
as critical problems within DoDo No plan of action L i.
be effective unless software problems are well undersid.

The task force was composed of representatives from
the Services and DoD with broad experience covering most
aspects of DoD software development and support. In-depth
knowledge of software technology R&D, software acquisition,
development, support, software engineering practices, stan-
dards, tools, and weapon system characteristics, were repre-
sented. Several members of the task force have either lead
or been members of DoD or Service-level initiatives relating
to improving various aspects of software development and
support.

Recognizing the complexity of the issues to be addressed
and the limited time to complete the task (60 days), there
was no attempt to research new issues and produce a defini-
tive study. Rather, the task force reviewed the numerous
reports written by other study groups and relied heavily on
the experience of its membership. The task force was par-
ticularly sensitive to the need for experience from current
projects and sought counsel with others who are currently
involved in project management of software for the DoD.

Throughout the document, the task force has illustrated
specific problems with examples taken from experience or from
studies. Use of these examples is not intended as a criticism
of a specific program or manager, nor were they chosen as iso-
lated examples. The current state-of-the-practice is generally
inadequate for the task, and the individuals involved often
have made heroic efforts in spite of the situation.

-l

The task force observed that software is both an oppor-
tunity and a serious problem for DoD, and that the problems
in software can impact the military mission. The remainder
of the Introduction presents the background and establishes
the arguments on impact to the military mission. Section 2
highlights software problems and illustrates its impact
on the military mission. Detailed problem descriptions,
summaries of cited reports, and case studies can be found
in Appendices A, B, and C, respectively. Section 3 presents
conclusions of the task force regarding the opportunities
and the difficulties in DoD software development and support.

The task force noted that DoD has several initiatives
dealing with aspects of the software dilemma. These are
summarized in Section 4 and described in Appendix D.
While these initiatives are important components of a total
strategy, the current level of activity is not adequate to
ensure that the DoD take full advantage of embedded computer
systems. It is recommended that a broader initiative that
focuses the efforts of DoD, industry and academia be started
to supplement current Service activities. Section 5 presents
the recommendations of the task force.

1.1 Background

Computers are an integral part of DoD weapon systems.
Virtually every system in the current and planned inventory
makes.extensive use of computer technology. Computers are
integral to our strategic and tactical planning. They
control the targeting and flight of missiles; they coordi-
nate and control the sophisticated systems within high
performance aircraft; they are at the heart of the defense
of carrier battle groups; and they integrate the complex

* activities of battlefield command. The military power of
the United States, as we know it toda,, is inextricably
tied to the digital computer.

Over the past twenty-five years, the weapon system
computer has evolved from a role of minor importance to
one of major importance. This trend has been accelerated
in recent years by the microelectronic revolution which
has been steadily improving the cost/performance ratio of
computers--cost has dropped substantially relative to
performance and capability. The amazing improvement in
cost/performance, coupled with the reduction in size,
weight, and power requirements of computers, has made it
possible to use computers in weapon systems in ways not
envisioned five years ago. The improvement has been so

-2-

great that embedded computer systems are now a primary
means of introducing new capability and sophistication
into our weapon systems.

Software for these embedded computers consists of
computer programs and computer data, which are integral to
weapon system operation or support, sometimes implemented
in firmware. Typically, such software has real-time con-
straints, performing both a component control function and
an integration function for the weapon system (such as
inter-component communication and control).

In the early uses of embedded computer systems, the
functional capability of the weapon system was embodied
largely in the hardware (sensors, control devices, etc.)
with the computer performing specialized or ancillary
functions. As the digital systdm has been used to control
not only the central function but also the inter-system
communications, the role of software has shifted from an
incidental role to that of essentially defining the system
functions. The hardware is simply the means by which
those functions are executed. Today, it is necessary to
understand the software in order to understand the capabil-
ities and workings of the weapon system.

The cost of software development and support often
exceeds that of computer hardware because the cost of com-
puter hardware has continually decreased while the software
has increased in function and complexity. On the other hand,
major weapon system hardware production costs (replication
costs) are still dominant. This has led to the paradox
that software is not always managed rigorously even though
it is a key ingredient of virtually every modern weapon
system. For example, the Navy AEGIS program management en-
countered difficulties because the work-breakdown structure
of work for the AEGIS system did not go into enough detail
to provide a sound basis for management of the contractor
software development effort. Without such a basis, software
cannot be managed effectively.

It is necessary to understand the nature of embedded
computer software to understand the magnitude of the chal-
lenge faced by DoD. The software controlling some DoD
embedded computer applications is among the most complex,
human-designed systems in the world. Embedded computer
software exhibits characteristics which differ markedly
from other types of software. For instance, ADPE software
generally uses numerical and alphabetic input and generates

-3-

files, printed reports, or 'isplays for a variety of appli-
cations on the same computer. Embedded computer software
usually uses analog and/or digital input from a variety of
sensors and sources, and generates digital control output
to complex weapon system components or status information
for human use.

By comparison to the typical business applications of
computers, DoD embedded computer software is often required
to support much more complex functions. In addition, this
software is usually designed and developed in parallel with
hardware (target machine and other subsystems). This results
in a development activity of higher risk than typical business
applications. The critical nature of embedded computer soft-
ware means that reliable performance is a much higher priority
than for business applications.. Failures in embedded computer
software involve time and dollars, but, more significantly,
they involve military weapons and possibly the loss of human
life. A failure in a business system usually is measured in
time and dollars only.

The management approach, design techniques, and devel-
opment process for DoD software have many similarities to
those used for business systems, but the complexity demands
a rigor and scope far exceeding that of business systems.
To characterize the size and complexity of embedded computer
software from another point of view, it is useful to consider
its cost. The software development costs for several weapon
systems, including training devices and automatic test equip-
ment, has exceeded $100 million, e.g., B-lB, E-3A, AEGIS, and
Safeguard. Such development projects require hundreds of
people applied over a period as long as five to ten years.
The magnitude of these efforts ranks DoD embedded computer
software among the most complex endeavors undertaken anywhere.

1.2 The Relation of Software to the U.S. Military Mission

By exploiting the flexibility of software in develop-
ment of its modern weapon systems, DoD has elevated the
importance of embedded computer software. A function
embodied in software is modified for less cost and in less
time to meet new threats than if the comparable function
were embodied in hardware. The Air Force F-1ll program
illustrates this point. The table below compares similar
capabilities (additional offset aim pointer and updated

-4-

weapon ballistics) implemented through hardware on the F-111
A/E and in software on the F-111 D/F. The savings in dollars
and deployment lead time in the digital F-ill D/F are striking.
Given an existing software support facility, the savings due
to making the changes via software rather than hardware have
ratios of about 50:1 in cost and 3:1 in time.

Cost/Time
Modification Via Hardware Via Software Ratios

#1 $5.28M/42 Mo. $0.1OM/16 Mo. 52.8:1/2.6:1

#2 $1.05M/36 Mo. $0.02M/10 Mo. 52.5:1/3.6:1

#3 $8.OOM/78 Mo. $0.02M/15 Mo. 400:1/5.2:1

Another example of the advantages which can be derived
from changing software without a physical change to the hard-
ware was the reprogramming of the Minuteman III missile.1 Bymodifying the software, engineers were able to improve the

accuracy of the system without expensive hardware change. The
change was designed and implemented in all Minuteman III mis-
siles for approximately $4 million, a relatively low cost
for the performance improvement.

In a more recent example, the Sea Wolf missiles, which
were just coming into service with.the British fleet when the
Falklands conflict began, had problems with their control and
guidance systems caused by the missile exhaust plume interfering
with the television guidance system. This problem was corrected
by modifying the software while the ships carrying the missiles
were at sea and in combat. 2 The software change enabled the
missile to fly offset from the direct line of sight until near
the target. The Sea Wolf missiles are credited with six air-
craft shot down and two more downed when they crashed while
taking evasive maneuvers.

The relative flexibility of software has made it an impor-
tant factor in modern weapon systems, but that same flexibility
puts software in a position to impact the military mission ad-

lScience, 22 Sept 78, "Technology Creep and Arms Race:
ICBM oblem a Sleeper."

2Aviation Week and Space Technology, 19 July 1982, "Air
Defense Missiles Limited Tactics of Argentine Aircraft."

-5-

L

versely if it is not managed properly. This impact manifests
itself as cost escalation, lengthened deployment lead time,
and operationally ineffective systems. There is evidence that
software is having such an impact and that the impact is be-
coming more severe with time.

The total cost of software in DoD today has been estimate
by the Electronics Industries Association at $5 to $6 billion.
By 1990, they estimate that the software cost (including infla-
tion) could reach $32 billion. Although much of the growth
is due to increased function and greater use of computers, a
cost growth of this magnitude warrants more focused DoD atten-
tion.

Another aspect of the cost issue is that software costs
are largely labor related. The.total labor resource of com-
puter professionals in the U.S. today is insufficient to meet
the national demand and the problem is getting worse. The
Navy estimates that the software workload for their embedded
systems grew exponentially from 1956 to 1978 increasing 150
times in that period. On-board memory of computers in mili-
tary aircraft over the same period grew from less than 50,000
to almost 400,000 words of memory.4 This exponential growth
will be dampened significantly by the computer professional
resource limitations. The result will be postponement or
outright elimination of required weapon systems function for
new or modified weapon systems.

Software is often the critical path item in weapon system
deployment because many of the requirements and design changes
that occur during development are absorbed by the software.
It is also the integrating element of the system. This again
is a consequence of the flexibility of software. Therefore,
the efficiency of the software development process and the
mechanisms to react to change are directly related to the de-
ployment lead time. If the years it takes to develop a soft-
ware system can be reduced to months, and if the months it
takes to implement major revisions can be reduced to weeks,
the U.S. will significantly increase its ability to react to
new threats or to pose unanswered threats to our adversaries.

3oDoD Digital Data Processing Study - A Ten-Year Forecast,"
October, 1980, Electronic Industries Association Government
Division

4Words of memory is a rough estimate of the number of instruc-
tions needed to tell the weapon system computer what function
to perform and how to perform it.

-6-

L." . . .°o . .° . . - v ° ° . ° " , " ° , ° ° -° • . . • . . o . o ..°°

The operational effectiveness of today's weapon systems
are of critical concern. The degree to which the embedded
systems help meet the operational need and perform reliably
is directly related to the quality of the software. Recent
experiences where systems have not met the need, or have been
faulty due to software, underline the importance of learning
how to better develop complex software. This is especially
true where software relates to the control and delivery of
nuclear weapons.

The impact of software on the cost, deployment lead time,
and operational effectiveness of DoD weapon systems is critical.
The military mission will be adversely affected unless signifi-
cant improvement can be made in the state of DoD software
development and support.

1.3 The Threat to U.S. Leadership

It is generally thought that the United States holds a
position of leadership in computer technology, but this lead
can quickly vanish much as the steel and automobile industries'
leads vanished during the last decade. There would be a signi-
ficant difference in the case of computer technolgy. The auto-
mobile industry plays an enormous role in the U.S. economy;
it does not play the same fundamental role in the U.S. techno-
logical lead in weaponry that computer technolgy does. To
maintain the lead in computer technology (and by implication,
in military supremacy), the United States must not only continue
an aggressive hardware technology research program but must also
insure the vitality of the software industrial and academic re-
search base, and the expansion of the industrial production
base for software. The U.S. could maintain a lead in hardware
technology yet lose the advantage by falling behind in software
technology.

There is reason for concern that the U.S. could fall behind
in this critical technology. Several countries have announced
national initiatives. For example:

a. The Japanese government, as a matter of economic
policy, is act~vely promoting the development of
knowledge-intensive industries. A specific objec-
tive of the Japanese in the 1980's is to leapfrog

5See "Software Design: Breaking the Bottleneck", IEEE

Spectrum, March 1982.

-7-

.... I

U.S. computer technology to become the world's
leading supplier of advanced computer systems.
Following two years of study and research, the
Japanese have produced a body of ideas and plans
for an initiative which they believe will result
in wFifth-Generation Computer Systems" by 1990.6
A major aspect of this initiative is the concern
for software.

b. The French government has established an insti-
tution called World Center for Computer Science
and Human Resources. 7 The mission of this center
is to "unite the social sciences with computer
technologies at a rate of development which exceeds
that of automation." The individuals chosen to
head this center include leading world scientists
(several of whom are from the U.S.) , a Nobel
prize winner, and several French cabinet ministers.

c. The United Kingdom is focusing on software tech-
nology research and development, creating two
independent activities. One is sponsored by the
Science and Engineering Research Council; it is
entertaining proposals from universities to under-
take a technically focused effort in software
technology research. The other, sponsored by the
Ministry of Defense, is focusing on the develop-
ment of tools and integrated environments.

Although the DoD has a vigorous Science and Technology program,
the U.S. has no activity comparable to these three foreign
government initiatives, which could ensure the U.S. a position
of continued leadership.

The growing shortage of qualified computer professionals
is a critical problem in the U.S. Unless attention is given
to this shortage, the software development and support resources.
of the U.S. will not be capable of meeting the demand. This
will cause a serious impact to the U.S. economy and will im-
pede the ability of DoD to maintain its superiority in weaponry.

6nProceedings of the International Conference on the Fifth
Generation Computer Systems," Tokoyo, Japan, October 19-22, 1981.

6"Japan's Strategy for the 80's, Business Week, December 14, 1981.
7"French World CPU Science Center Stirs House Panel Concern,"
Electronic News, 7 June 1982.

-8-

The academic base for software research is endangered
by the heavy demand for software professionals. Professors
and new Ph.D.s are leaving the universities for lucrative
positions in industry. This trend not only erodes the
U.S. software research base, it also hampers the education
of system engineers, software engineers, and computer
scientists in the numbers necessary to meet the demand.
Industry can't and won't solve this problem alone. Although
it may be in the best interest of industry to strengthen
the universities so that more software professionals are
educated, industry is under competitive pressure to hire
qualified software professionals from any available source
and recently has been choosing the short term expediency
of luring Iniversity professors to well-paid industrial
positions.

Further, industry-based research does not always improve
the general state-of-the-art. Competitive pressures often
motivate industry to retain their research results as pro-
prietary. Research is usually published or sold only if
some benefit accrues to the company. This proprietary
approach makes it impossible for one company to build on
the innovations of others in any meaningful sense. As a
consequence, the software industry does not display the
same style of value-added products as is exhibited in other
industies.

In summary, the U.S. lead in computer technology is
fundamental to U.S. military superiority and the U.S. may be
in jeopardy of falling behind in software technology. Other
countries have started positive initiatives in software
technology. DoD must assure an aggressive leadership role
and establish a vigorous program of cooperation among DoD,
industry, and academia to ensure U.S. excellence in software
and to exploit the full advantages of computer technology for
military systems.

8Communications of the ACM, June 1981, Vol. 24, No. 6,
"Eating Our Seed Corn," by Peter J. Denning.

-9-

,- , - -, j o . , . . ., , - - . . . -. • . - - _ . . . "

2. Fundamental Difficulties with Software

Software is a critical element in DoD weapon systems and
is essential to the DoD mission. It presents enormous oppor-
tunities, but the DoD faces a broad range of significant diffi-
culties associated with the development, support, and manage-
ment of software. There is no single description of a software
problem that best characterizes the situation because the diffi-
culties are numerous and interrelated. For example, poor design
decisions are often related to management and engineering inex-
perience as well as inadequate modeling tools to evaluate the
design; these bad design decisions may, in turn, result in
software that is costly to develop and support; costly support
breeds other problems such as a drain on development resource.
The multiplicity of interrelated problems makes improvement
in software development difficult unless many of the problems
are addressed by a coordinated dffort. Simply improving the
tools of software production will not have the same impact
as parallel improvements in the associated software engineering
disciplines, and in the skills of the professional staff.

Appendix A contains a description of many of the diffi-
culties DoD experiences with software. The appendix is not
intended as a complete taxonomy but rather as a strong indica-
tion of the extent of the difficulties. The following sections
parallel the taxonomy in Appendix A, summarizing the problems
presented in it and illustrating the impact on the military
mission with factual examples, where possible. Many of the
examples are excerpts from the case studies presented in

.- Appendix C.

Although there are many ways to organize a problem
taxonomy, the task force chose four major categories: the

*. life cycle of software, the software production environment,
the software product, and software technical and management
professionals. These categories represent different and over-
lapping views of software problems. Several different views
are necessary to describe the complex state of DoD software.

2.1 The Life Cycle of Software

The life cycle of software is the set of activities asso-
ciated with the development, in-service support, and operation
of the software from its conception to its retirement from use.
The part of the life cycle pertaining to development andin-
service support is usually presented in terms of a process
model. There are many models of the life cycle process which

-10-

differ primarily in the definition of activities and in the
relations among these activities. No specific model is

* presented in this report.

The following sections present a discussion of life cycle
problems categorized as requirements, management, acquisition,
product assurance, and transition.

2.1.1 Requirements Definition and Analysis

The requirements definition phase of the system life cycle
is the least formalized phase in the sense of software engineer-
ing disciplines. During this phase system requirements are
stated, defended, and negotiated among the users, the development
or support agent, and the acquisition agent. This negotiation
process relates the estimate of resources needed for the develop-
ment project to the severity of the threat and the scope of

*the needs to which the system is directed. Understanding among
users, acquirers, and contractors is extremely important. One
problem in understanding stems from the lack of precision of
English prose. Another is the process of relating the system
requirements to lower level software and hardware subsystems.The inclusion of interoperations with other equipment adds

to the difficulty of achieving and maintaining understanding
among the participants.

Requirements analysis and definition is one of the most
critical yet troublesome activities in the software life cycle.
The software requirements are often ill-defined and, more im-
portantly, they are characterized by continual change. This
is true more for software than other parts of the weapon system
because software is the most adaptable to change. Therefore,
many weapon system requirements changes are manifested in soft-
ware changes. The mechanisms to manage this change are inade-
quate in many projects. In particular, it is often difficult
to estimate the impact of a requirements change, adding to
the unpredictablilty of software development resources and to
frequent cost or schedule overruns.

Not only are some embedded software requirements difficult
to define and highly volatile, but they have proven to be diffi-
cult to validate. This results in deployed systems that do not
meet the full need of the user. The COMPREP System experience
is an example of this situation (See Appendix B.8). This
message processing system was abandoned after development when

-Il-

* , . . , . -

it failed to pass its operational evaluation because it was
deemed inappropriate to the operational needs of its user.
Military units had to operate without a needed message pro-
cessing system; this impact to DoD perhaps was more signifi-
cant than the lost dollars.

Too little is known about how to assess the impact of
a requirement, or a change in requirements, on software size
and complexity. This problem exists not only for the mission
system but also for its support systems. For example, small
changes in aircraft performance requirements may lead to
large changes in the air crew training device software.

On the positive side, properly designed software can be
advantageous in handling changing system requirements. The
addition of relatively small amounts of software can have a
large effect on system success. An excellent example of this
is found in NASA's Viking program, which was the mission to
Mars. Originally, the ground support software was to receive
and process simultaneously, the data from both Mars orbiters.
The development contractor (after development was well along)
recommended that, since each orbiter had on-board data storage,
alternating (rather than simultaneous) transmission and pro-

*cessing be permitted. This change saved an estimated 30% of
the already high projected costs of software without degrading
the mission. Another issue on Viking was the ability to trans-
mit new computer programs to the space vehicles. This require-
ment was added at relatively low cost and proved critical to
achieving the launch date and extending the mission life of
the spacecraft.

2.1.2 Management of Life Cycle Activities

Management of software life cycle activities exhibits
many associated difficulties. Planning is often inadequate.
This is due in part to the difficulty of estimating development
resources accurately and of evaluating the impact of changes in
requirements. These planning and control difficulties place
management in a position of reacting to situations after they
occur rather than anticipating them in time to prevent their
occurrence or minimize their impact. The result is both
added cost and extension of the development schedule.

Managers possessing little understanding of embedded com-
puter software are often thrust into positions where their
decisions directly affect the software process. This can be

-12-

manifested in many ways including: inappropriate contracts,
lack of strong systems engineering in software development

or modification, lack of attention to disciplines that are
appropriate to software development, lack of effective plans
for software activities, inappropriate methods and tools for
tracking software projects, inappropriate assignment of re-
sponsibility, and inappropriate prediction, establishment,
and monitoring of schedules and budgets.

Part of the difficulty in improving our ability to manage
software life cyclQ activities is the lack of suitable measure-
ment data or metrics. Without this data, management will con-
tinue to be hampered in planning, controlling, and evaluating
software efforts. Measurement data on past projects are a pre-
requisite to adequate estimation of new projects. Measurements
throughout the life cycle are necessary to give management the
information required for control. Measurements are needed to
allow management to evaluate new techniques. The current state-
of-the-art does not permit software professionals to quantify
the benefits of techniques because little empirical data exists.

Acquisition and engineering managers lacking familiarity
with embedded computer software are often thrust into positions
of responsibility. Some managers ignore the software development
and support aspects of their jobs. Officers with little acquisi-
tion and embedded computer software experience are often respon-
sible for projects involving millions of dollars. Fixed price
contracts have been used inappropriately for high risk develop-
ment causing financial strain to the contractor and cut corners
on the developed software.

There is a lack of appreciation for discipline and good
communication among systems, specialty, and software engineers.
There is a need for measurable milestones and planning, assess-
ment of quality, and planning for integration and test of soft-
ware and systems.

There are no generally accepted models that can predict
development size, complexity, staffing, schedule and budget
for software. Unrealistic schedules, difficulty in monitoring
development, and poor planning for the life cycle remain prob-
lems for some service elements. There is often a lack of good
management discipline in all life cycle phases.

-13-

Foreign Military Sales (FMS) aggravate issues concerning
release since software can contain intelligence, technology,
performance and vulnerability information. Lack of understand-
ing at the top government levels leads to inconsistencies in
guidance and split responsibilities. Vague and incomplete
disclosure letters leave the services in the awkward position
of trying to satisfy conflicting DoD and State Department
guidance. FMS also aggravate the design and skill shortage
problems in the software area.

2.1.3 Software Acquisition

There is a lack of uniform methodologies for handling
the acquisition of software. The detailed methodologies for
hardware contracts are often inappropriate to software but are
often used. Interfaces are poorly maintained with weak configu-
ration control when different parts of a system are developed
by different contractors because focus is normally on hardware
with too little attention to software. Documentation is often
of little value in understanding project status, because it is
either absent or late. Procedures for change control during
the procurement process are often time-consuming, inconsistent
and ineffective. The procurement process is so lengthy that
changes to requirements occur during the process. This causes
further delay and, if uncontrolled, these changes can cause
unnecessary cost escalation.

There is a great reliance within DoD on software contrac-
tors for creating the software. Contractors often convince
project managers to permit use of non-standard techniques,
tools and hardware which do not always offer an overall life
cycle benefit in that they focus on the development cycle and
totally ignore or pay only lip service to the in-service support.

A frequent error for embedded computer software is the
belief that software and hardware can be developed and supported
by different companies or agencies without a strong systems
engineering authority to allocate requirements, coordinate
design, resolve conflicts, and perform the system integration
function. One particular C2 system, started in 1973, attempted
acquisition with separate hardware and software contractors.
The software development cost went from $1GM to $40M due to
requirements changes and configuration differences. No con-
tractor was responsible for overall system delivery. The pro-
gram was cancelled in 1978 because the software would not work
properly with the hardware.

-14-

L2

2.1.4 Software Product Assurance

Software product assurance includes all the life cycle
activities associated with dembnstrating the correctness of the
software product (e.g. requirem-nts, design, code) and its
quality. This is done through analysis, reviews, and testing
techniques.

Product assurance of software through testing should be a
continuing process throughout the system life cycle. This re-
quires allocation of adequate resources for test planning and
cooperation among the acquisition agent, development contractor,

* test agent, support agent and user. Independent verification
and validation (IV&V) implemented early in the system life cycle
can help achieve better quality software.

Too little is known about different testing techniques and
how much testing is enough. Secure systems (not just operating
systems), artificial intelligence systems, and distributed

*systems are applications where there are no good criteria for
various applications to determine how much testing is optimal
at each step in the software development process. In a recent
digital flight control system development, during software
integration, there were so many hard-to-find errors (due to
insufficient module testing) that the integration was curtailed
and more extensivp module testing resumed. This caused a sub-
stantial slip in schedule.

Test environments are different from the real environment -
* a factor that influences the amount of test and the software
* reliability. Too often, testing is governed by the amount of

time that is available. Optimal test requirements for different
embedded computer software applications need far better definition.

2.1.5 Transitions in the Life Cycle

There are several points in the life cycle of software
where problems occur in the transition to succeeding activities.
Two of the more difficult transitions are from exploratory re-
search to engineering development and from development to support.

*; The former is characterized by new and rapidly changing technology,
* while the latter requires a stable technology base.

The very rapid change in computer technology has a destabil-
izing effect on acquisition and support engineering. For in-
stance, firmware is widely used in today's weapon systems yet

I

-15-

4

acquisition familiarity, policy and support concepts have not
kept pace with the technology. Contractual requirements in-
tended for software have been disputed by contractors as not
being applicable to firmware. For engineering development,
the economies of hardware and software are shifting, software
becoming the dominant cost item, but engineering tradeoffs are
still imposed which favor hardware optimization. The DoD Acqui-
sition Improvement Program has provided guidelines toward de-
ciding whether the most recent technology should be incorporated
in weapon systems or whether state-of-the-art research and de-
velopment should be followed with pre-planned product improve-
ment; and how technology transfer should take place using con-
tractor incentives; but it is not clear how these guidelines
are to be meaningfully applied to embedded systems software.

The transition from development to in-service support
(sometimes referred to as "maintenance") is another such point
where difficulties occur. These difficulties are usually
characterized by differences in software support environments,
standards, and methods between the development group and the
in-service support group. There are several cases where this
incompatibility has cost DoD millions of dollars.

2.2 The Support Environment

The software support environment is defined as the methods,
tools, and facilities used for software development or in-service
support. Problems in the support environment are categorized
by the lack of disciplined methods, labor intensive process as
caused by inadequate tools, reinvention of software, and insuf-
ficient capital investment. These four categories are discussed
in the following sections.

2.2.1 Disciplined Methods

Software has been developed and supported by contractors
(and in-house personnel) who are not required to practice
adequate engineering discipline in software activities. This
lack of discipline varies from those who recognize the necessity
for discipline but fail to apply it on a particular program,
to those who fail to recognize software as requiring discipline.
Some of the shortcomings include: lack of adherance to good

-16-

programming standards, lack of adequate configuration manage-
ment practices, inadequate baselining and documentation, and
lack of adequate system engineering practices applied to a
program. Major causes of this lack of discipline are: inade-
quate development standards, ineffective product assurance
programs, inadequate subcontractor management, and deficiencies
in contract requirements.

The problem of an inadequate software engineering disci-
pline is characterized by the laissez faire attitude in the
selection of techniques used from one project to another,
antiquated programming methods, ad hoc requirements analysis
and design, and the informal methods of testing complex systems.
This situation has an adverse effect on development costs but
can have a more significant effect on in-service support costs.
Varied styles of documentation and coding, coupled with inade-
quate quality due to ad hoc techniques, can significantly in-
crease the cost of maintaining and enhancing deployed software.

2.2.2 Development and Support Tools

Software engineering is, by its very nature, labor inten-
sive. However, this is aggravated by the fact that techniques
and tools are out-of-date, insufficient, inefficient, and
limited. Automation of mechanical processes is occurring but
more is needed to improve productivity. Automated tools could
increase productivity but there are no accepted productivity
measures for tools or tool sets.

The approach used in developing the F-15 software support
facility illustrates the level of success possible in achieving
tool uniformity. The F-15 Avionics Integration Support Facility
(AISF) was developed by WR-ALC/MMEC, beginning in late 1976. The
approach taken for development was to be as common as possible
with the existing F-1ll facility. This approach was intended
to serve two purposes: (1) software would be transportable be-
tween facilities; and (2) by keeping the design concept as
similar as possible, a model would le available for scoping,
pricing, sizing, etc.

The design approach was built around a common support
concept with common processors and peripherals, common language
(where possible), and other common hardware. Due to the vast
difference in weapon system mission and avionics system archi-
tecture, only a minimal amount of software was directly trans-

-17-

4

portable. However, much of the previously developed F-l1
support software approaches and algorithms were reused. It
was the opinion of personnel closely associated with the back-
ground of the F-15 facility planning that resource estimates
would have been grossly underestimated had they not decided to
use the F-1ll facility as a model.

Proliferation of languages and instruction set architectures
(ISA's) increases development support costs such as training,
documentation, and tool reinvention. Personnel are unaware of
tools and models that could save time. Tools are either unpub-
licized, hard to understand, or inefficient. Often, support
tools are not useful because they are non-reusable due to unique
language/ISA, have poor quality and poor documentation, or
consist of a set of tools which do not interface and are not
user-friendly. In addition, there is difficulty in making the
transition from development to contractor and support personnel
of non-weapon system specific tools.

Automated support of the software life cycle process
activities is heavily oriented to the single activity of code
generation which can represent a relatively small part of the
total development effort. Computer-based tools to support re-
quirements analysis, design, verification and validation, and
management are inadequate. What tools do exist in these areas
are not designed to work with tools supporting other activities.
The consequence is that the development process remains heavily
labor intensive and prone to errors. With the rising cost of
software professionals, continuation of the current situation
will become more and more costly to DoD.

2.2.3 Reinvention in Software

A concern in software development today is the inability
to make use of functionally similar software developed for
other systems. Reuse of software has been limited because of
the difficulty of determining if functionally similar software
exists, and because the large majority of software is not de-
signed with reuse in mind. The result is a high degree of
re-invention in software development with the impact of
higher costs. 9

9The Air Force does not perceive this concern with equal
priority.

-18-

There may be abundant opportunities for reusable software
components within such areas as realtime executives, file
management subsystems, display software and report generators,
which, though developed independently, represent very similar
functional capabilities.

The elimination of reinvention may represent a large
opportunity for cost avoidance for DoD, potentially measuring
in the hundreds of millions of dollars. This opportunity
is illustrated by the examples presented in Appendix C.3.
One of the examples presented, the Navy Command and Control
System (Ashore) software, represents an opportunity cost of
over $10 million. Although the cost savings potential is
significant if reinvention can be eliminated, there are other
important payoffs. Namely, development lead time can be
reduced and software reliability can be improved.

2.2.4 Capital Investment

In order to solve many of the software problems facing DoD,
capital investment is required. To date, software-related capital
investment has not been sufficient. The Army's Post-Deployment
Software Support (PDSS) Centers illustrate this point. The funds
required for capital investment and labor (R&D, OMA, MPA, and MCA
funds) for nine support centers is $404 million for the period
1982-1987. The funds available are $135 million or a shortfall
of $264 million. This funding shortfall will seriously impact
the effective deployment of Army systems.

The area of software support environments represents both
a great opportunity and a necessary burden for DoD. Better
support environments are a prerequisite for better software
engineering and the elimination of reinvention. The investment
necessary to attain this (equipment, education, etc.) is large,
and there has been an unwillingness to make the necessary
capital commitment. What money is allocated to software support
is often reprogrammed to other weapon system needs. Software
is viewed as a low priority item by management when it comes
to a funding crunch. If DoD is to solve its current software
problems which pose a serious threat to its military mission,
software must be given the proper priority in funding.

A subject related to capital investment is government-
funded independent research and development (IR&D) by industry.
There are too few good ideas for software research projects

-19-

being funded in the IR&D arena. The task force has the percep-
tion, which it was unable to validate, that software IR&D
projects get low scores because evaluators are not software
oriented, and results are not as tangible or quantifiable as
the competing projects.

2.3 The Software Product

The software product is defined as the operational embedded
computer software and any material required for adequate life
cycle support - requirements specifications, design specifica-
tions, source code, test data, system generation data, unique
support tools, etc. The problems associated with the software
product are categorized as not meeting the need, difficult to
measure, design attributes, and documentation. These categories
are discussed in the following sections.

2.3.1 Software Utility

Deployed software often fails to meet the full need of the
intended users. This can occur when the original requirements
were incorrectly stated or when requirements were incorrectly
implemented. Ambiguous, unclear, and incomplete communication
between the user and implementor causes undetected omissions
or internal contradictions. In some cases, it is difficult to
assess the real user need without first placing a system in the
field for the purpose of use and evaluation. Since completion
and performance criteria are often inappropriate, incorrect,
or impractical, product evaluation is difficult. In summary,
the right requirements may not be stated and, even after the
embedded computer software has been developed, it may be diffi-
cult to decide if the software meets its stated requirements.

An example of requirements uncertainty or conflict is
provided by a recent fault isolation concept for a weapon
system. The initial concept for fault isolation was to pro-
vide a rigid step-by-step guide to maintenance personnel through
a video display. Although this was appropriate for inexperi-
enced maintenance personnel to use, there was some concern that
experienced maintenance personnel might want to avoid many of
the pre-planned steps to get quickly to the tests that would
exercise the components suspected to be faulty. An early hands-
on evaluation of the system indicated that both approaches were
necessary; hence, the software had to be modified to accommodate
the additional requirement for ready access to specific tasks.

-20-

2.3.2 Software Metrics

Good analytic models and hard empirical data on software
are lacking. Without these it is difficult to estimate develop-
ment resources, evaluate future cost and mission impact of
embedded computer-related decisions, or evaluate the positive

*benefit of new software engineering techniques. 2xisting
software cost estimating models are inappropriate because they
require data not available until the project is underway.
Experience with these models indicates that they do not provide
accurate estimates. To create better models and compute better
estimates, a comprehensive data base of measurements is needed.
Such a data base is not available today. This is due in part
to the reluctance of companies to share data. The lack of a
standard set of metrics also hanqpers collection and sharing.

There are no validated models of life cycle costs and
productivities in embedded computer software development and
support. For example, difficulty with using current models can
be seen in these figures taken from a guidebook on software
cost estimating:

Forecast Actual Ratio of
Project Total MM Total MM Forecast/Actual

A 419.7 71.0 5.9

B 2288.5 991.7** 2.3

C 51.5 43.8 1.2

D 3298.7 514.8** 6.4

E 7.9 7.3 1.1

(** Contains some estimate-to-complete data, along with actuals.)

One reason that metrics are not well-defined is that there
are so many different approaches to software development and sup-
port. Until uniform software engineering approaches are de-
fined, it will be difficult to define standards or guidelines
for data collection. Such standardization is essential to the
automation of the collection and data reduction activities
which will make measurement cost effective and practical.

-21-

4

2.3.3 Design Attributes

The design of a system strongly influences its eventual
total cost, how long it takes to develop it, and how amenable
it is to change during development and support. The concepts
and constraints for embedded computer software design are
sensitive to technology--especially the architecture and capa-
city of the computational system (computers, memories, data
buses etc.) and the role embedded computer software must play
in the weapon system. Embedded computer software design demands
a thorough knowledge of many fields--the weapon system, engineer-
ing, computers, and software technology. Good design provides
many benefits to a system while poor design causes many diffi-
culties.

Many of the problems associated with the software product
find their source in design. Poor choices at the system design
level can place constraints on the software that result in cost
escalation. Software design which does not properly consider
future changes increases the life cycle cost and limits the
ability to react to new threats through software modification.

In addition, poor human engineering or lack of robustness of
the software may make a system operationally unacceptable to
the user.

Software's remarkable flexibility for change (when com-
pared to hardware) often masks a serious problem--most embedded
computer software cannot be changed as easily as it should
because of its inflexible design. This is illustrated by
systems where relatively small requirements changes (measured
from the point of view of function) impact many aspects of the
software and force a disproportionate amount of redesign and
code generation. The cost of this inflexibility is significant.
More disturbing is the inefficient use of scarce professional
resources. They could be applied to the implementation of
further enhancements which, otherwise, have to be delayed or
cancelled.

The software implications of design decisions made at the
weapon system or embedded computer system level are often
ignored or misunderstood with disastrous results, as illustrated
by the following example. An aircraft engine control system
was based on an eight-bit microprocessor architecture. This

-22-

choice required the use of double precision in the software to
N- achieve the necessary accuracy. The use of double precision

resulted in timing and memory problems. To solve these problems,
algorithms were revised and a more complex software design was
necessary, severely complicating verification and testing. The
project was delayed when errors became increasingly difficult
to find and correct. Some might blame the software for this
failure when, in fact, the root of the problem was poor decisions
at the system design level because personnel did not understand
the application.

2.3.4 Documentation

Documentation plays many roles in the development, opera-
tion, and support of embedded computer systems. Its focus can
be anywhere from the broad concepts of a system design to minute
details. The primary role of documentation is to convey infor-
mation. During development, documentation captures the status
of the software system at its current stage of development, in-
cluding requirements, design, design trade-offs, implementation
status, etc. This documentation allows the personnel of a large
project to communicate to each other the information necessary
to develop and manage a complex system. When the software is.
deployed, this documentation is used by the in-service support
group to make modifications to the software. Modification of
large software systems can be very costly without adequate docu-
mentation. During operation, documentation on the operation of
the software is necessary for effective utilization by the user.

Documentation for embedded computer software is often in-
adequate for cost effective in-service support. There are a
number of reasons for this. Documentation of a complex software
system can be voluminous and costly to produce. If the develop-
ment agent is under cost and schedule pressure, which it usually
is, documentation is one of the first items to be cut or deferred.
Until software documentation is an integral by-product of the
software engineering process, supported by automation, and main-
tained in an electronic form, poor documentation will be a con-
tinuing problem.

When documentation is produced, it very often lacks the
important attribute of traceability -- relation of a requirement
to the design and code components that implement it. This
makes it difficult to evaluate the impact of requirements changes.
It also impedes the updating of documentation to reflect the con-
tinuad changes to the software.

-23-

2.4 Embedded Computer Software Professionals

People are the most important resource in any software
development or support effort. Design and redesign remains an
intensive intellectual activity even after the best of automated
tools is applied. Not all software professionals are so adept
as others. The variation in effort among different individuals
doing the same job can be as much as 25:1. With this degree of
variance, it is no wonder successes and failures alike in soft-
ware can be traced to the skills and experience of the profes-
sionals involved, both technical and management. Many rate the
capability of the development team as the most important produc-
tivity factor.10

The problems relating to personnel are categorized as
skills, personnel supply and proper incentives. These categories
are discussed in the following sections.

2.4.1 Embedded Computer Software Professional Requirements

The key skill required by embedded computer software per-
sonnel is the ability to communicate across traditional engineer-
ing, computer science, and management disciplines to evolve
coherent software requirements, designs, and modifications.
Lack of currency for both technical and management personnel
impedes the low risk transfer of new technologies to weapon
systems. The government needs mature and adequate technical
and management skills to prepare requirements, monitor develop-
ments, and support future changes. Acquisition and support
skills for embedded computer systems are not taught in univer-
sities.

Qualified managers and professionals must have a wide
range of skills and experience. The example in Appendix C.3
illustrates the difficulties that can be caused by inexperienced
management. The management decisions concerning the signal
processing computer and proper reserves for immature GFE/GFI
caused a three year delay and millions of dollars in cost
overruns. The ultimate impact was a three year delay in the
deployment of a major surveillance system.

10See Software Engineering Economics by Barry W. Boehm,
Prentice Hall, Inc., 1981.

-24-

* . * * * .2 , . . . - ,

* The personnel problem is exacerbated by the limitation of
* most entry level and middle technical/management civil service

*' positions to the Engineering (GS-800) series in the commands
that acquire ECS. This excludes computer science and other
related degree fields from pursuing careers or shifting to
careers involving ECS acquisition. It should be noted that
Civil Service regulations currently prohibit advertising a
position as interdisciplinary when one of the disciplines is
a "Professional" series (as is the GS-800 Engineering Series).

2.4.2 Availability of Qualified Professionals

The demand for software engineers and computer scientists
exceeds the supply. There are no data on which to determine
the true need, particularly forsoftware acquisition personnel.
The Service policies of rotating officers through a variety of
jobs reduces and disrupts the supply of qualified personnel.
For all Services there is a lack of adequately trained civilian
and military personnel to satisfy post-deployment software
support requirements. The shortage has caused the Services to
become heavily dependent on contractors. This reliance creates
problems with personnel turnovers, long learning curves, and
less skilled personnel.

The Navy FCDSSAs are a good example of the projected impact
of personnel shortages. By 1985, the projected shortfall in
professional software personnel (as compared to demand at the
FCDSSA in San Diego) will be over 200 people, and by 1990 it
will be over 600 which means less than 50% of the demand wi.ll
be met by the available resource. (See Appendix C.2)

The Army Post-Deployment Software Support Centers estimate
a current shortage of 300 civilian and military personnel re-
quired for the manning of nine centers. This shortfall reflects
a spending shortfall for the centers, but even if the funding were
available, it is doubtful that the required personnel could be
obtained.

The competition for qualified personnel will.intensify
with the increasing shortage in computer professionals. DoD
will have difficulty competing with industry. For instance,
the COMTEC 2000 study (Appendix B) shows that the second term
retention rate of enlisted personnel with certain computer re-
source skills is only 50% because of the attraction of industry
jobs.

-25-

The Electronic Warfare Support Directorate at Warner-
Robins Air Logistic Command is another example of the people
problem. They (WR-ALC/MMR) are only 60% staffed against their
engineering slots. This shortage is aggravated by Foreign
Military Sales of the Electronic Warfare systems they support.
Since November, 1981, there has been a 30% increase in such
sales (FMS EW cases). This number is expected to grow since
there are more sales being negotiated. Though this activity is
strongly driven by the policies of the present U.S. administra-
tion, it results in the requirement for long term support.
Staffing the FMS work is difficult at best and tends to drain
skilled people from U.S. embedded computer software work.

The problem of shortages in qualified software professionals
will not be solved easily. This problem is not new, but it has

* not been perceived to be a pressing issue by DoD. As more de-
mand is made of the current limited resource, corners will be
cut, gradually reducing the operational capability and relia-
bility of our weapon systems until failures become painfully
more frequent.

2.4.3 Incentives

Present incentives favor migration of skilled personnel
from job to job. Government software talent moves to other
government jobs or to industry for promotion, better working
conditions, and educational opportunities. Perceived salary
shortcomings reduce the government ability to attract highly
qualified people. There is no formal, effective career manage-
ment program with classification/qualification standard adjust-

- ments, continuing professional education, challenging assign-
ments, and identification/communication of career paths.

4-

The following career pattern for entry level software
system engineers has been observed at one Navy field activity.
Entry level personnel are difficult to obtain. For those

Sengineers that enter at GS-7 level, promotion to GS-9 occurs
in one to two years. At this point, the software engineer is
faced with a career decision: to market his valuable skill to

-. the private sector or remain within the civil service. Approxi-
mately 60% opt for the private sector. Those electing to remain
in the civil service generally reach GS-12 level in two to three
more years. Then even the best are faced with a career stop
causing another decision at which 40%, usually the top achievers,
turn to the private sector. This loss of mature journeyman
software engineers is the most difficult for the organization
to absorb.

-26-

4

There needs to be a "software engineering" career field
for both military and civilians which recognizes the skills
needed are a combination of engineering and computer science.
The career path should encourage the development of managerial
and technical skills and experience pertinent to embedded
computer software applications.

-27-

3. Conclusions

The improvement in the cost/performance ratio of digital
computers over the past 25 years, along with the reduction in
the size, weight, and power requirements of digital hardware,
has resulted in an increase in the use of digital electronics
in weapon systems. Today, most weapon systems are dependent on
digital systems and embedded digital computers. Since software
is inherently more flexible than hardware, software has become
the means of capturing the essential "intelligence" and control
functions of the weapon systems, making the systems more adapt-
able to changing threats. Given the important role software
plays in weapon systems, problems in the development, support,
and operational effectiveness of software can adversely impact
the military mission. Conversely, improvement of the process
and of the quality of the produat can have a positive impact on
the military mission.

The Joint Service Task Force on Software has reviewed the
problems in embedded computer software and the impact these
problems are having on the military mission. The conclusions
of the task force are:

a. Software represents an important opportunity in
regard to the U.S. military mission. Digital
computer software provides the means to incorporate
added capability in weapon systems. Its charac-
teristic of ease of change in comparison to hard-
ware provides an invaluable means of quickly
reacting to new threats.

b. Technological excellence in software is an impor-
tant factor in maintaining military superiority.
Initiatives by the governments of other countries
are aimed at the attainment of computer and/or
software leadership for these countries. The
U.S. has no comparable initiative. In addition,
economic forces coupled with the shortage of
computer professionals threatens to erode the
academic base for education and R&D.

c. The state of DoD software development and support
is adversely affecting the military mission. The

4problems in software development and support are
many and varied. They combine to cause cost
escalation and deployment delays. The net result

-28-

-

is unnecessary lengthening of the lead time
-. required to meet new enemy threats. Function is

cut and quality suffers as the demand for new
systems increases. The result can be an ineffective
or faulty system. If improvements are not made, it
is reasonable to expect more failures in operational
weapon systems in the near future.

d. There is no single "software problem." Appendix A
presents an extensive list of problems in software
faced by DoD. It is necessary to solve many of these
problems in order to solve one for they are inter-
related. Therefore, any initiative addressing DoD
software problems must be broadly based to be
effective.

e. DoD must take a leadershi, role in solving the
problems in software and in avertins the erosion of
the technology base. DoD cannot rely solely on
industry or other agents to solve the problems it
faces in software, or to assure the health of the
software technological base. DoD must take the
initiative to support existing Service programs
and to establish programs that will join industry
and academia with it in solving the problems while
continuing to stimulate R&D.

4

-29-

4. Existing Initiatives

The DoD has a number of current initiatives designed to
improve the efficiency of the development and support process
and the quality of software. The breadth and complexity of
DoD's software causes a wide variety of problems. For this
reason, DoD's initiatives range widely in purpose and scope.

At the joint Service level, the Ada and Joint Logi3tics
Commanders' (JLC) initiatives are the most prominent. Others
involve software quality assurance and testing.

Each Service has a number of initiatives; only some are
mentioned here. The Air Force Systems Command has an inte-
grated research, development, and acquisition planning system,
entitled Vanguard, to integrate technology base activities
into appropriate mission area and functional plans, including
their Computer Resource Functional Plan. In addition, the Air
Force Logistics Command has begun an Embedded Computer Systems
Support Improvement Program (ESIP). The Army Post-Deployment
Softdare Support (PDSS) initiative focuses on its battlefield
systems--how to provide effective and economic support while
ensuring a close working relationship between the combat user
and the material developer. The Navy has a set of complementary
initiatives: the Tactical Embedded Computer Program Office
(TECPO) is a project office for coordinating the development
of all embedded computer resources within the Navy; the Soft-
ware Engineering Environment Working Group (SEEWG) program
defining the Navy's strategy for definition, development, and
introduction of a Navy standard software engineering environ-
ment; a systems command program for coordinating all Program
6.2 advanced development funds; and a study to determine the
full scope of the Navy's embedded computer system products.
Details of these and other activities are found in Appendix D.

The DoD maintains a close relationship with academia and
industry. DoD support for academic research provides an infusion
of ideas and is one of the cornerstones of technology. Industry
has the challenging (and difficult) task of developing DoD's
requirements into hardware and software, often at the leading
edge of technology. Thus, DoD has a deep and critical interest
in the technical vitality of industry and academia.

-30-

These activities can be expected to yield steady improve-
ments in the technology base and in the ability to manage
software. But, a substantial improvement in the state-of-the-
practice is needed. Such a jump will require a coherent plan
for focusing technology and non-technology initiatives. DoD
now has many initiatives but they need to be bolder, broader
in scope, better coordinated, and involve academia and industry.

Support for these initiatives must be from the level of
the Secretary of Defense. This gives them the impact that
cannot be felt by initiatives at lower administrative levels.

-31-

5. Recommendations

The DoD Joint Service Task Force on Software recommends
that a DoD-level software initiative be established for embedded
computer systems with strong joint Service cooperation in the
spirit of the Ada and VHSIC programs. This initiative should
supplement, integrate and build upon existing DoD and Services'
activities.

Such an initiative would:

a. provide visibility and credibility to the Services'
articulation of the importance of software in the
military mission, and of the problems currently
realized in software,

b. serve as a forum for coordination among individual
Service initiatives and on-going joint efforts,

c. serve as a focal point for technology initiatives
relating to software within DoD, and

d. address some of the manpower, educational and
productivity issues associated with software devel-
opment and support.

In order to define and direct the initiative properly, the
task force recommends that a plan of action be developed. The
plan should present the basic DoD strategy on software. The
plan should be developed with an understanding of the role
software plays, the current problems and their related impacts,
and important current Service and DoD initiatives.

It is recommended that each Service continue its individual
efforts to characterize and improve its software environments,
to highlight and solve problems and to investigate and pursue

' areas of significant pay-off. The plan should be refined as
necessary based on the on-going Service efforts.

The Task Force recommends that the DoD software initiative
address three major areas: acquisition/management, technology,
and expertise. These three areas are defined below and are
partially elaborated by specific recommendations. The list
of specific recommendations is not meant to be all-inclusive.
Rather, it is a representative starting point for the Plan.

-32-

a. Refine and support software acquisition and support
management practices: Incentives must be defined
to encourage quality products with reasonable develop-ment and support costs. Techniques for effective
management of all life cycle activities must be
developed. Some specific recommendations are:

(1) Adequate Monitoring - Contract monitors have
no adequate way to measure progress during
software development and to measure accepta-
bility of the software product. Consequently,
the contract monitor seldom has the technical
or management basis to withhold payment or
to negotiate. Better monitoring approaches
or tools should b4 developed.

(2) Life Cycle Support Requirements - The DoD
should establish a quantitative life-cycle
model which recognizes that changes to software
are going to occur. This model must reflect
interactions within the development cycle, re-
defining requirements, revising specifications,
redesigning, changing code, retesting, and pre-
planned product improvement. Support require-
ments, contracting mechanisms, procurement
strategies, #nd personnel selection must be
oriented to the flexibility of software to
support rapid controlled change where required.

(3) Incentives - Contracting incentives should en-
courage development of quality software. Incen-
tives which would encourage the reuse of exist-
ing software should be instituted. These in-
centives should be tied to useful and meaningful
metrics.

(4) Microprocessor/firmware Policies - The DoD should
formulate uniform policy governing microprocessor
and firmware definitions, idertification/labelling,
concept of operations, conf'., iration management,
higher order languages, and data item descriptions.

-33-

4 ' ' |! ' i " -ii i i | i i. .

b. Stimulate technology research, development, and
utilization: The proper circumstances must be
created to allow one research group in government,
industry, or academia to build on the breakthroughs
of others. This must include an effective means of
quickly moving promising research products into
evaluation and practical use. Some specific
recommendations in this area are:

(1) Impact of Requirements on Systems - Mechanisms
must be developed to assess the impact that
requirements and requirements changes have
on the complexity of software and systems.
Historical information should be consolidated,
and models should be developed. Metrics and
tools need to be developed to assist software
engineers in assessing the impact of proposed
changes to the system.

(2) System Design - Research into designs and
design practices for a variety of system types
should be supported. System and software
design for reuse, distributed computational
architectures, highly parallel processing,
design for requirements change, design for
minimum errors, design for testability,
design for support and pre-planned product
improvement, and design techniques in the
event of computer plenty should be developed
and evaluated. VLSI development will yield
substantially reduced hardware cost, thus
designs consistent with new economic and
performance factors-must be pursued.

(3) Empirical Data and Metrics - Uniform metrics
and measurement aids must be developed to
support collection of consistent and useful
cost estimation, productivity and quality data.
The data should then be used to develop cost
prediction models, and provide the foundation
for developing and evaluating analytical
automated support tools and practices.

-34-

|4.

(4) Common Tools -An integrated environment,
which implements consistent software develop-
ment and support methodologies should be con-
structed. Experimentation is needed to demon-
strate the utility of the methodology. Metrics
are needed to evaluate the productivity of the
tools.

(5) Support for Documentation - Automated assistance
in the preparation and maintenance of docu-
mentation is needed. Methods which more closely
relate documentation to the code and which
ensure greater consistency and currency are
needed. Examples of various documents for
different uses and different reading audiences
should be generated. It is appropriate to
define the levels and type of documentation
required to support effective ownership of
different types of software. For example,
research which would support the capture of
graphic representations of designs could
yield effective tools to support modification.
This effort should build on present JLC
efforts to define Data Item Descriptions
(DID) to bring DoD data items in line with

0the current state-of-the-practice and should
complement follow-on activities to address
generation and documentation of data items by
advancement of software engineering techniques
and automated tools.

(6) Rapid Change - The DoD needs to develop a
better strategy for dealing with high tech-
nology areas which experience continuous
and rapid change. Recognizing that software
often supports systems in which the requirements
or the technology are likely to undergo change,
development of techniques which efficiently
accommodate change is needed.

(7) Technology Communication - Greater communica-
tion should be promoted among Service elements
developing similar technology. In common soft-
ware technology areas, lead elements could be
designated to ensure that a critical mass of

-35-

research exists. Care must be exercised
not to prevent other Services from continuing
work in that area so that the technology com-
munication and insertion across the Services
and throughout industry not be hampered.

(8) Technology Evaluation and Infusion - A frame-
work for experimentation and evaluation should
be defined to enable selection of evolving
software technologies and to guide the inser-
tion of new technology into DoD projects at
low risk to those projects.

(9) IR&D - Qualified DoD software personnel
should become more involved in review of
industry IR&D activities involving software.
The IR&D rules should provide appropriate
incentives to encourage coapanies to pursue
software research.

c. Develop and use expertise: Comprehensive programs
to increase the skills of the current technical and
management software population must be started in
government and encouraged in industry. University
computer sciences and software engineering curricula
must be improved and capacity expanded. Some
specific recommendations are:

(1) Qualified People - The DoD should define and
advocate systems and software engineering
career fields. It is essential that the DoD
establish a program to address the education,
training, recruitment and retention of systems
and software engineers and managers. Career
progression for both civilian and military
need to be defined and instituted. For in-
stance, the West Coast Region of the Professional
Council of Federal Scientist and Engineers con-
ducted a study which recommehded a civilian
software engineering series; the series has been
delayed by the Office of Personnel Management.
That effort should be revitalized and given
high level support.11

llIn addition, the Naval Material Command Office of Per-
sonnel Management is hosting a conference in October to
define software engineering, discuss personnel problems,
and develop a plan to improve problems relating to soft-
ware engineering personnel.

-36-

77

(2) Government/Industry Exchange - A program

encouraging exchange of software personnel
between government and industry should be
initiated. Care needs to be exercised that
the exchange uses competent people and is not
viewed as training for the inexperienced.

(3) Productivity Measurement - Measures must be
established for evaluating productivity of
programmers, software engineers, and managers,
and for relating appropriate skills to the
quality of the product.

Summary: Problems exist in the design, procurement and
support of software systems. These problems
cannot be ignored. They need a focused, coherent,
market-oriented strategy at the DoD level to
ensure solution. The problem is bigger than any
individual Service can address alone and needs a
broad, bold apprcach, which includes both academia
and industry as willing participants.

-37-

APPENDIX A

Software Problem Taxonomy

and Descriptions

of Software Problems

14

4\

INTRODUCTION

Appendix A describes problems in software. They are
structured into four major categories and sixteen minor
ones. Each Service described the most critical software
problems experienced by that Service, although not all prob-
lems were experienced by all Services. The result is a set
of problem descriptions, written by the Services and melded
into one set of software problem descriptions.

APPENDIX A: PROBLEM TAXONOMY

PAGE

A. Life Cycle 2

1. Requirements 3
2. Management 13
3. Acquisition 19
4. Product Assurance 21
5. Transition 24

B. Environment 28

1. Disciplined Methods 29
2. Tools 31
3. Reinvention 41
4. Capital Investment 42

C. Product 44

1. Doesn't Meet the Need 45
2. Software Metrics 47
3. Design Attributes 51
4. Documentation 60

D. People 63

1. Skills 64
2. Availability 66
3. Incentives 68

14
A-1

-4

A. Life Cycle

The term "life cycle" includes all activities (includ-
ing the relations among activities) involved in the devel-
opment, operation and support of embedded computer software
from its inception to its retirement. Problems included as
part of the life cycle were divided into the five major sub-
categories of requirements, management, acquisition, product
assurance and transition. The problems described under life
cycle are some of the most ill-defined and difficult problems
to bound or to solve. They involve working with and through
people on items or processes that are extremely complex, as
well as often technically demanding.

A-2

PROBLEM: A.l Life Cycle: Requirements

DESCRIPTION:

Establishing Requirements - System requirements are usu-
ally negotiated among the user, the supporter, and the
acquisition agent to meet an enemy threat or to take ad-
vantage of new technology within the confines of finan-
cial resources and schedule factors. It is essential
that communication be free and adequate to ensure that
no misunderstanding and, hence, subsequent conflicts
arise. This process is sometimes impeded by disagree-
ments, and sometimes by uncertainty on some of the re-
quirements among the parties.

Conflict is particularly true when the system to be
developed is first-of-a-kind. Only after some experience
on the project can the user or acquisition agent begin
to see what is truly required. Here again communication
is important.

An example of requirements uncertainty is provided
by a recent fault isolation concept for a weapon system.
The initial concept for fault isolation was to provide a
rigid step-by-step guide to maintenance personnel through
a cathode ray tube display. This was designed for inex-
perienced maintenance personnel to use. There was some
concern that experienced maintenance personnel might
want to avoid many of the sequential steps to get quickly
to the tests that would exercise the components they
suspected were faulty. An early hands-on evaluation of
the system indicated that both approaches were necessary;
hence, the software had to be modified to accommodate
the additional requirement. It is not clear that this
requirement could have been defined earlier in the
program.

Communication with contractors is also extremely
important to ensure that requirements are clearly con-
veyed. Differences in understanding and interpretation
are common and are often reflected in the software imple-
mentation.

Using English Prose for Requirements - The inadequacy of
the written word is a subtle, but important, problem.
Requirement statements tend to use the specific terminol-
ogies of various engineering disciplines. The interpre-

A-3

ters of the requirements must understand the system and
the terminology in the same light that the writer of the
specification intends. Too often people of different
backgrounds misinterpret the requirements without recog-
nizing that misinterpretation. This is attributed (by
some) to a lack of basic definitions; however, it is
more likely a lack of background by the participants in
each other's disciplines, and a lack of clear, concise
communication on the person-to-person level.

Derived software requirements and design cannot be
a process based only on paper. A classic example of
this occurred on the Safeguard Ballistic Missile Defense
Program. The software subcontractor did not have the
years of experience (in the system and its components)
that the prime contractor had. After many attempts to
prepare specifications that the subcontractor could cor-
rectly interpret, problems in understanding persisted
(even though the two companies were only seven miles
apart). The communication problem was eventually solved
by moving a substantial number (about 100) of the prime
contractor's systems engineers into the subcontractor's
facility so that the requirements could be interpreted
on a daily and case-by-dase basis.

Allocation of Requirements - According to systems devel-
opment methodology, requirements for embedded computer
systems (ECS) are derived from higher-level weapon system
requirements plus imposed standards. These requirements
are manifested in specifications which, when implemented,
are intended to satisfy the user's stated needs. As the
requirements flow down to subsystems through the systems
engineering process, they are more quantitatively detailed
in an effort to distribute the design and development
activity among different departments of the same company,
or among different subcontractors.

4j Satisfaction of quantitative requirements at some
level in the "flow down" usually becomes a contractual
obligation on a contractor. Changes in the requirements
at the contractual level require formal technical and
contractual paperwork. The process of requirements allo-
cation and modification is one of the most important
functions of systems engineering.

Some contractors are not conversant with' the sys-
tems engineering process as defined by Service standards.
This leads to a tendency to put inappropriate levels of
detail in the requirements documents, dictate inappropriate

A
" A-4

hardware, and require use of inappropriate methods.
It also constrains the design studies and makes the acqui-
sition agent potentially responsible for the design flaws.
An example of the misunderstanding is provided by a recent
ground control system where the contractor was required
to re-edit all of his software requirements specifications
to eliminate all design information inappropriate to that
level of specification.

Implications of Requirements - Implications of systems
requirements on embedded computer systems ECS (and particu-
larly software) are not well understood. Generally, many
of today's weapon systems engineers do not have adequate
appreciation of how much effect a particular requirement
has on the ECS. The modification of a few minor require-
ments can sometimes have a significant effect on the
size of the ECS effort. The inability to estimate
accurately the size and complexity of the software
effort for new technology systems remains a problem.
The ability to perform good trade studies is not univer-
sally available.

For system types and technologies new to the devel-
opment team, there is limited historical data on which
to assess the completeness, attainability, cost and risk
associated with implementing the requirements. In par-
ticular, it is very difficult to estimate the effort
associated with ECS design, code, checkout, integration
and test for such systems because there is no similar
prior development to use as a guide. (The converse to
this is also true. The F-16 ECS development went reason-
ably well because of the contractor's previous experience
with the F-111 aircraft. Combat Grande software is also
an excellent example of success because it did not press
the state-of-the-art and was similar to a previous sys-
tem developed by that contractor team.)

The modification of a few minor requirements can have
a substantial effect on the ECS effort; and the addition
of relatively small amounts of 3oftware can have a large
effect on system success. An excellent example of this
is found in NASA's Viking program, which was the mission
to Mars. Originally, the ground support software was to
receive and process, simultaneously, the data from both
Mars orbiters. Since each orbiter had onboard data stor-
age, the contractor recommended during development that
alternating (rather than simultaneous) transmission and

A4

A-5

processing be permitted. This change saved an estimated
30% of the already high projected costs of software with-
out degrading the mission. Another issue on Viking was
the ability to uplink new computer programs to the space
vehicles. This requirement was added at relatively low
cost and proved critical to achieving the launch date
and extending the mission life of the spacecraft.

Another example, not so fortunate, deals with an
Air Force weapon system that had an appropriate margin
requirement for computer sizing and timing. A high-
level management review group, seeking to reduce program
cost, forced a reduction of the margin to save on com-
puter hardware costs. Not only was the software more
expensive to implement, but it grew in size to where the
additional hardware was put back into the system, thus
raising the cost and extending the schedule. There was
no appreciation of the impact of the requirement by the
high-level review group even though the acquisition
agent predicted the eventual impact to them.

Changes to Requirements - There are strong factors
that drive system changes even when the requirements are
clearly understood. Threat changes, funding changes, and
technological insights are three important factors. Air
Force acquisition agents tend to resist frivolous changes
because of the cost of modification to documentation,
existing hardware, existing software, and schedule.
Change activity is usually sole source (because competi-
tion is usually not feasible) and, hence, relatively
expensive. Since the embedded computer often implements
the system and subsystem requirements, embedded computer
software is usually severely impacted by requirements
changes.

Rapidly advancing technology also impacts system re-
quirements and change. There is often a tendency either
to try to achieve the latest technology (which adds pro-
gram risk and often manifests itself in the necessity to
compensate in software what could not be achieved in
hardware); or to use mature technology without providing
for pre-planned product improvement, thus making future
upgrading to new technology more expensive. There is a
lack of planning to consider change and to try to incor-
porate it economically.

A-6

E .. - ..

Explicit Support Requirements - Many system acquisitions
have an implicit requirement for supporting ECS software
when the system is operational. A number of problems
often interfere with the development of good, explicit
requirements regarding support. The most important omis-
sion is not developing an operational concept (and, hence,
a support concept) and the subsequent decision of who will
be the support agent, until late in the process. Without
these issues resolved, there are problems in developing
cost-effective, verifiable, support requirements for
ECS contracts.

There is a lack of good engineering data on which
to base trade studies for support requirements. Speci-
fically, what tools, processors, system designs, archi-
tectual designs, and software designs are cost-effective
are often merely the subject of opinion. The support
objectives must be a part of the system trade studies
if there are truly to be life cycle efficiencies.
Changing technology, standardization efforts, testing
requirements, mandated schedules and budgets, software
tools, and verification and validation, all impact the
support equation. The acquisition agent can only
respond in his decision making to qualitative factors
since he has no quantitative data on alternatives.

Concurrency of Air Crew Training Devices (ATD) - Concur-
rency is having the configuration of the trainer always
correspond to the configuration of the primary weapon
system, as far as training functions are concerned.

The configurations of the primary weapon system
and the air crew craining device (ATD) must be closely
synchronized to provide valid training on the ATD. The
alternative is to generate misleading learned responses,
referred to as "negative training". For example, if a
new avionics capability is added to an aircraft OFP, but
not incorporated in the ATD model of the OFP, the crew
members being trained will practice and learn the outdated
responses in the ATD, then have to relearn the affected
operations and tasks while flying. To avoid this situ-
ation, there is a support requirement for the timely up-
dating of the ATD to reflect changes to the configuration
of the primary weapon system so that aircrew members can
become familiar with the modifications before trying to
fly or operate the actual system.

4

A-7

In Air Force direction AFR 57-4 it states, "Trainer
modifications should lead the weapon system modification
by at least 90 days..." without delaying the weapon sys-
tem modification release. In a support environment,
this involves extensive coordination by the supporters
of the weapon system and the ATD. Although AFR 57-4
advocates a 90-day lead time, this is seldom achieved
because of funding delays and administrative restrictions.
In addition, the ATD is slaved to the weapon system and
the ATD support personnel are dependent on their primary
weapon system counterparts for all technical information.

Concurrency of ATD change to primary weapon system
change normally does not exist. Delays of ATD configura-
tion updates of several years are common. Contracts for
ATD modification are normally not let until all primary
weapon system modification data is received, which causes
a delay of at least 18 to 24 months for the approximately
90 percent of concurrency modifications which have to be
contracted. Sometimes the delay is longer than two years
due to lack of immediately available funding.

In summary, there is a long lead time from the field-

ing of a change to the primary weapons system (e.g., the
aircraft) until the modification of the trainer. The
situation is contrary to directives which call for con-
current or leading modification.

Lack of concurrency undermines the usefulness of
the trainers. Pilots/crew members lose confidence in
the devices, do not reduce their flying hours, and train-
ing objectives are not met. Any improvement of the sup-
port posture should be aimed at reducing the time lag to
modification of the trainer.

Some Requirements for Security - The problem of ensuring
the security of software, and the operational systems
they support, requires the development of secure oper-
ating systems. In military systems there is also a re-
quirement for protection of classified information and
privacy data.

The design of secure software requires a balance be-
tween requirements, policy and operational requirements
and technology. Additional costs of ten to fifteen per-
cent are typical.

A-8

II

Early attempts to achieve secure software by use of
patches did not work. The security features must be in-
cluded in the basic operating system design. The use
of a secure kernal has been successful in early develop-
ments but work is already underway on the development
of complete secure operating systems such as Provable
Secure Operating System (PSOS).

Secure software systems must be certified to verifythe multi-level system security properties and to provethe design is secure. The goal of a security system is
to provide a strong assurance that it is impossible for
an unpriveleged user to compromise protected information.

Security considerations, in the view of inter-oper-
ability, cause increased complexity due to the number of
systems and levels of security required within each sys-
tem. There is need to provide a common security module
that will provide adequate multi-level security for
Joint Services and NATO inter-operability in a hostile
environment.

Inter-operability - The technology explosion of the 1960's
and 70's produced a rapidly expanding potential for the
application of automation (computer technology) on the
battlefield. Within every functional area, planners
generated unique concepts and requirements for automated
systems. Many of these systems were subsequently devel-
oped without a clear awareness of other systems under
consideration, or the information exchange requirements
which might result. One result of those independent
development efforts is the proliferation of non-standard
systems for which inter-operability requirements are
not considered. Many of the systems are so far along
in the development cycle that costly changes will be
needed to satisfy requirements for inter-operability.
But even the investment of millions of dollars will not

'4 ensure the desired inter-operability, unless: (1) inter-
face requirements can be clearly stated; (2) inter-oper-
ability concepts are well understood; and (3) interface
design planning is conducted on the basis of a totally
integrated structure.

Current attempts to take this proliferation of systems,
each with a unique design, and interconnect them in a manner
which will satisfy a wide variety of interoperability re-
quirements, must address some highly complex problems in
network design. The following paragraphs highlight a few
of the problems which must be addressed.

A-9

Intra-System Inter-operability - U.S. Army Tactical
Automated Systems (TAS) are composites of several
individual pieces of equipment, each of which
could be considered a complete system in itself.
The integration of these inter-operating subsystems
has forced the TAS developers to address inter-oper-
ability concepts within their individual TAS
design. Rules and conventions had to be established
to govern the information exchange between the
subsystems. Such intra-system inter-operability has
resulted in de facto protocols which are unique to
each particular TAS.

Intra-System Communications - The txistence within
some TAS of inter-operating subsystems which must
be geographically separated, has created a require-
ment for intra-system communications. Since the
available means of communications, as well as the
information exchange requirements, may differ for
each subsystem interface, different communications
protocols (as well as network link, and physical
protocols) are sometimes implemented in the archi-
tecture of a single TAS.

Evolving Communications Systems - Within the mili-

tary communications community there exists an excel-
lent understanding and capability in the areas of
communications network control, circuit, message,
and packet switching, and general communications
inter-operability. Complete digital communications
systems, and automated information distribution
systems are now evolving. Some of these communica-
tions systems can be considered as automated systems
in their own right. However, such systems did not
exist, and their protocols and characteristics were
not established when today's systems were in the con-
cept formulation and early development stages. Ad-

.0 ditionally, such advanced communications capabilities
are not generally available for use by systems which
are now operational, or which will be fielded in the
near future. As a result, the development of some
systems has included the development of perfunctory
communications networking and switching systems
which are embedded in the system processors. In
many cases, the communications protocols are included
in, and not easily separated from, the user or sys-
tem protocols. Accordingly, unique communications
protocols often differ from, and conflict with, the
protocols of the evolving communications systems.

A-10

Unique Solutions to Common Problems - Many military
terms, functions, and applications are common to the
entire military community, or at least common through-
out large segments of that community. However, the
independent development of each automated system
has produced numerous instances where identical
problems have been solved differently. In some
cases, there may be valid justification for a unique
solution. In many other cases a common solution
would be equally acceptable, but the impact of
changing after the fact is prohibitive. As a result,
system inter-operability is restricted because simi-
lar or related systems have implemented unique solu-
tions to common problems.

Forward and Backward Inter-operability - The life-
cycles of automated systems are varied and uncer-
tain. Some systems may remain in the active mili-
tary inventory for a number of years; other systems
may be short-lived and replaced by second or third
generation systems; and still other systems may dis-
appear as doctrine and technology changes produce
a completely different system to perform those func-
tions. Development cycles and the dates on which
new systems will be introduced, also reflect great
variety and uncertainty. As a result, achieving
inter-operability today means that% backward inter-
operability is required with systems, protocols, and
techniques which were conceived and developed 20 to
30 years ago, and forward compatibility is required
with concepts which may not be realized until 20 to
30 years in the future.

Monolithic Protocols - Many of the emerging auto-
mated systems have implemented monolithic protocols
incorporating all functional levels into a single-
level *ad hoc" protocol. It is often difficult or
impossible to differentiate and extract particular
functions from these systems. Inter-operability
planners will find it is difficult to incorporate
monolithic structures into an inter-operable archi-
tecture which is based on layered or multi-level
protocols.

A-11

4

Key software inter-operability consideration
is involved in the following: man/machine inter-
faces, software versus firmware, flexible message
generation capabilities, software inter-operability
training, provision of adequate multi-level security
for joint Army/NATO inter-operability and consider-
ations for continuity of operations, and surviva-
bility of automated systems in the battlefield.

A-12

1.0

PROBLEM: A.2 Life Cycle: Management

DESCRIPTION:

Knowledge of ECS - Managers who have little understand-
ing of embedded computer software are thrust into posi-
tions of responsibility where their decisions directly
affect the software development and support process.
They often do not appreciate the increased complexity
implied by the decisions they make, and, in particular,
do not appreciate the system aspects of software devel-
opment and support. Some managers ignore the software
development aspects. Others believe that software is
extremely flexible and, therefore, can compensate for
shortcomings in other areas without serious impact. In
conducting this investigation, the management issue is
one of the two most cited problems (along with availa-
bility of people). Some of the statements often heard
are:

o "Management does not understand software
problems and puts them on the back burner."

o "Management does not understand software
quality assurance."

" Management is afraid of software-related
decisions and fails to act."

Acquisition - In acquisitions (particularly on less
than major programs), relatively junior officers with
little acquisition experience and little ECS experience
are often responsible for decisions involving millions
of dollars. Use of fixed price contracts on high risk
developments has, at times, been pursued when cost
contracts would have been more suitable. Typically
schedules and budgets are driven by what is available
rather than by what is necessary to do a satisfactory
development. Acquisition methodology is not always
understood nor appropriately tailored to the nature of
the particular acquisition.

System Management - A frequent management error for ECS
is the belief that software and hardware can be developed
and supported by different companies or agencies without
a strong systems engineering authority to resolve con-

A-13

- -.. -. 7•

flicts and to perform the systems integration function.
The Safeguard example, cited previously in A.1, demon-
strates the necessity for close communication between
system hardware, and software engineering. One partic-
ular C3 system, started in 1973, attempted acquisition
with separate hardware and software contractors. The
software development cost went from $10M to $40M due to
requirements changes and configuration differences. No
contractor was responsible for overall system delivery.
The program was cancelled in 1978 because the software
and the hardware would not work together.

Another related example deals with an aircraft sys-
tem in which management bought the automatic test equip-
ment (ATE) from one contractor and the aircraft compo-

. nents from another. Management failed to realize that
internal changes to aircraft components, that may be
form, fit, and function compatible, can effect the fault
detection and fault isolation software in the automatic
test system. No participation of the ATE contractor on
the aircraft configuration control board was planned;
hence, when the ATE was completed it could only fault
isolate preproduction components but not production com-
ponents. New software had to be developed from scratch.

Risk reduction suggests the use of prototyping of
software, but management usually uses the prototype for
subsequent source selection. Hence, the prototype is
used "to sell" the system but does not achieve the goal
of risk reduction.

There is still a lack (particularly in smaller
companies) of appreciation by management for the necessity
of discipline in ECS development, and the necessity for
good communication among systems engineers, specialty
engineers, and software engineers. Some managers have
had inadequate exposure to computer and software concepts
and terminology; thus, fearing the technology, they
give software inappropriate attention and make either
poor or no decisions. Management skills within the
same company are highly varied from manager to manager
in regard to ECS. Those elements of system management
which the manager best understands tend to occupy most
of his time rather than a balanced application of
attention across all system problems.

A-14

Foreign Military Sales - The development of ECS-based
weapon systems creates unique problems in the area of
foreign military sales (FMS). These are due primarily
to: (1) the intimate relationship between ECS software
and classified foreign intelligence data; (2) sensitivity
and vulnerability of ECS-based weapon systems as a re-
sult of software algorithms and data; and (3) the ina-
bility to accurately define technology transfer 'issues
associated with ECS software. The problem is that State
Department (and other personnel familiar with the inter-
national political climate) may not be aware of tech-
nical constraints, while design engineers and contract-
ing personnel may not understand the political consid-
erations.

These problem areas are further accentuated by
associated problems created by: (1) national disclosure
guidelines which do not provide adequate guidance on
the issues of technology transfer and disclosure of
embedded classified intelligence data within many ECS
software; (2) lack of understanding within management
of the issues; (3) State Department commitments for the
sale and support of ECS-based weapon systems without
adequate consultation with the DoD; and'(4) the split
responsibilities for release authority between DoD and
DCI on ECS-based weapon systems. The above problems
eventually show up as vague and incomplete disclosure
letters. These, in turn, leave the service agency in
the awkward position of trying to satisfy both State
Department and DoD guidance on the sale of the ECS-
based weapon system.

Concerns are surfacing regarding electronic war-
fare integrated programming, EWIR data release for for-
eign military sales, the national disclosure policy, and
the intelligence that could be obtained through reverse
engineering of software programs embedded in radar warn-
ing receivers and ECM pods. Recently the national dis-
closure policy group at OSD was briefed on the problems
with EW systems and fire control radar. They agreed to
discuss the possibility of developing new release guide-
lines and to include NASA on the OSD/NDP committee.

In one system, FMS programs were started with delivery
dates in advance of normal lead times. Detailed customer
reviews were required prior to issuance of the letter of
offer and acceptance (LOA) to begin preliminary contractual
activities essential for delivery. The preliminary dis-

A-15

4

closure guidelines were too vague (thus subject to various
interpretations) and incompatible with the level of dis-
cussions required for contractual progress. As a result,
the customer was sometimes given inaccurate impressions of
the equipment he would be getting.

One foreign government was offered a standard Elec-
tronic Warfare suite. They were told at first that their
equipment would be tailored for their use based on threat
data provided by them and deemed releasable by the U.S.
Government. Subsequent to tendering of the LOA, the
delegation of disclosure letter (DDL) was issued and
proved to be more restrictive than the preliminary guide-
lines. Resolution delayed contractual activities which
eliminated any management flexibility and potentially
may result in delivery of the hardware to the country
prior to software. Reiterations of precontractual activ-
ities may be required in those instances where the DDL
is more restrictive than the preliminary guidelines.
The type of acquisition, such as production under license
or co-production, will also affect data disclosure guid-
ance.

The effect of FMS on the ECS world is also seen in
the shortage of skilled support personnel. It is diffi-
cult anough to plan for and obtain the necessary skilled
staff needed to support U.S. weapon systems which have
an acquisition cycle measured in years. It is more dif-
ficult to react in months when an FMS case is being nego-
tiated and signed. The short lead time results in an
adverse impact on U.S. support since transferring trained
U.S. support people to FMS support positions is often
the only alternative.

The Electronic Warfare Support Directorate at Warner-
Robins Air Logistics Command is an excellent example of
the personnel problem. They (WR-ALC/MMR) are only 60%
staffed against their engineering slots. Since November,
1981, there has been a 30% increase in signed EW cases,
each of which authorizes an additional engineering slot.
This number is expected to grow since there is a 60%
increase in cases being negotiated. Though this activity
is strongly driven by the policies of the present U.S.

4 administration, signed cases result in the requirement
for long term support to some degree independent of
administration policies. Staffing the FMS work is dif-
ficult at best and tends to drain skilled people from
U.S. ECS work.

A-16

Authority- Clear assignment of responsibility and auth-
ority for individuals and organizations is often missing.
The lack of disciplined methods is partly attributable
to management's lack of confidence in a highly technical
process, and partly to its reluctance to constrain soft-
ware professionals.

Schedule and Budget - The lack of useful data on project
status makes management of software systems difficult.
The difficulty of measuring progress in software is one
factor, and the lack of historic metrics and standard
measurement models is another.

Software checkpoints are often aligned with events
external to the software schedule, such as hardware
availability, political considerations, or manpower.
This alignment is usually done without consideration of
the realities of the software development process.
Such schedules have no creditability.

Estimation of Schedule and Budget - There is a severe
lack of useful metrics on software--how to gauge devel-
opment size, complexity, schedule, and budget. There
are no generally accepted models and the lack of good
models makes estimation of schedule and cost difficult.
Cost and schedule estimates are often based on unfounded
assumptions, making allocation and trade-off analysis
difficult. Vague requirements, complex interfaces, and
continuing changes further compound the problem.

Life Cycle Planning - In many projects there is a lack
of an effective plan for the management of the software
over its entire life cycle. There is little available
in the way of tools for tracking progress over a life
cycle. Most of the project management plans and resource
tracking mechanisms are internal to the contractor. The
lack of automated project management tools causes improper
assessments of potential increases in schedule and costs.

The lack of a good system plan causes many problems:
coordination of different activities will break down,
emphasis may be placed on the wrong areas, subtasks may
be poorly synchronized, and changes may be poorly con-
trolled. Good planning is difficult under the best of
circumstances because of the constant changes required,
but the lack of planning causes many procedural and coor-
dination problems.

A-17

Tracking Tools - Few tools exist for tracking the changes
to a software system over its life cycle. Some contrac-
tors have good tools but they are applied only during
the development period; also, these tools are generally
proprietary. The lack of good automated tools hampers
management planning.

Evaluation Tools - The lack of perfdrmance monitors and
modelling tools does not permit analysis of the efficiency
of the current system architecture, therefore, any sig-
nificant change in the system cannot be properly evaluated
before it is accepted or rejected. In many cases, tech-
niques and tools for the evaluation of system performance
are not employed.

Disciplined Environment - Management must support and
implement a strong discipline for systems and software
engineering, both for acquisition and support, and for
government and contractor professionals. Thorough plans
must include: the use of a realistic software develop-
ment plan; the application of clear, measurable check-
points; the careful assessment of quality; and the plan-
ning for integration and testing of software and the sys-
tem. One or more of these key points is generally over-
looked.

A-18

PROBLEM: A.3 Life Cycle: Acquisition

DESCRIPTION:

Software Contracts - Software is normally acquired as
part of a system. System procurement has historically
been the design and purchase of hardware, so the rules
for acquiring software are based on the rules for
acquiring hardware. This causes many problems and incon-
sistencies because software does not have the same char-
acteristics as hardware. Typical problems:

O The contract type is inappropriate to the situation,

for example, using a fixed-price contract for a
poorly-defined, high-risk software function.

o Requirements continue to change and are either
uncontrolled or ineffectively controlled.

o The system contract does not specify that it includes
all rights to the software.

o The software tools used to develop and maintain the
software are not acquired.

o Money is not provided for development of software
tools and tool documentation.

o Life cycle costs are ignored.

Management of System Interfaces - Frequently, different
parts of the system are developed by different contrac-
tors. The focus is on the hardware and little attention
is paid to the software. Good interface specifications
and management are necessary to ensure a smooth integra-
tion of all parts. Many problems occur at the interfaces,
especially changes which are known only to one side of
the interface.

Project Status Reports - Documentation for project status
is often lengthy but not very useful. Software does
not have highly visible points at which status can be
carefully tracked and measured. The concept of "inch-
stones" instead of "milestones" increases the number of
software measurements but requires much more management
and contol.

A-19

.4

Documentation Requirements - Documentation is frequently
the orphan of software development. Its requirements
are vague and overlapping, it frequently gets starved
for funds when hard choices must be made, it is often
overwhelming in volume and marginal in value, and it is
mostly written after the fact.

Change Control - Requirements changes and design changes
cause many problems in software. Software is the part
of a software/hardware system which is most amenable to
change, so changes tend to impact software and be clus-
tered at tiLe end of the schedule when there is the
least time to handle them. Change is endemic to software
and must be very carefully and rigidly managed; it
frequently isn't, with disasterous results.

Reliance on Contractors - DoD relies heavily on contrac-
tors for creating and managing the software development
process. Such heavy reliance naturally causes problems.
As the percentage of work done by contractors increases,
the problems for DoD also increase.

Design for the Complete Life Cycle - Design decisions
ror software are rarely made with the complete life
cycle in mind. Decisions are normally made to resolve
an immediate design problem and rarely consider how the
change might impact the cost of the software over its
useful life. Good design can reduce the costs incurred
during the long period of in-service support; this
long period of maintenance is a reality for most weapon
systems and is rarely considered. All resources (i.e.,
hardware, software, documentation, tools, personnel
qualifications, etc.) needed for life cycle support
should be clearly identified during acquisition, but
rarely are.

A-20

PROBLEM: A.4 Life Cycle: Product Assurance

DISCUSSION:

Introduction - Software in embedded computer systems is
developed for requirements that characterize the needed
functions and performance of the weapon system. Impli-
cit in the development are characterizations of the hard-
ware (computer and otherwise), the operator/maintenance,
and the physical and threat environment. During the sys-
tem development, these characterizations become more
realistic, i.e., hardware prototypes are more realistic
than paper designs, actual feedback is more realistic
than anticipated reaction, and operational test is more
realistic than simulations. As more realistic behavior
occurs, the software must often be modified to accommodate
a new and better understanding of the system. For new
systems for which there is no history of engineering
data, the discrepancies between anticipated factors and
real factors are magnified.

Testing - The purpose for testing software during develop-
ment is to demonstrate that the product satisfies the
design and the requirements. Testing reveals (although
not completely) coding errors, design errors, and require-
ments incompatibility. Static tests focus on syntax
errors while dynamic tests focus on all types of errors.

The best testing process, according to modern per-
spectives, is incremental during the development. That
is, units are tested before integration of all of the
software so that when the complete software package is
tested, many of the coding errors should have been elim-
inated.

For extremely complex software one hundred percent
assurance is impossible based on limited development and
acceptance tests. Complete assurance only comes through
extended use.

For different application types, different test
requirements should exist since the implications and
impacts of errors are different. For example, an error
in nuclear-release software is far more important than
an error in support software.

A-21

There is a lack of criteria for various applications
to determine how much testing is best at each step in
the software development. There were so many hard-to-
find errors (due to insufficient module testing) during
software module integration of a recent digital flight
that the integration was curtailed and more extensive
module testing resumed. This caused a substantial slip
in schedule. Furthermore, test environments are often
different from the real environment -- a factor that
influences the amount of testing performed and the
reliability of the software. Too often, testing is
governed by the amount of time and money that are avail-
able. The area of optimal test requirements reqarding
ECS software needs far better definition.

Application Dependencies - As indicated previously, the
degree of product assurance depends on the severity of
the implication of an error. General test tools may
be helpful, but they will test only against paper re-
quirements and paper environments. The cost-effectiveness
of these tools individually and in combination must be
assessed for each application type.

In the flight controls application, the software
may be required to accommodate multiple hardware failures.
The likelihood of crash due to software may be stated in
terms of no more than one crash for every 107 to 109
flight hours. Assuring these requirements are met is
most difficult.

In self-learning systems or other applications of
artificial intelligence where the software may be chang-
ing itself or its data base over time, there is also an
important product assurance challengp

Continuous Process - Software testing is not a single
event during system development, but should be considered
a continuous process throughout the development phase,
and for much of the early operational phase, of the total
system life cycle. Software for current and evolving
military systems is increasing in complexity to such an
extent that "100% testing" of every software program
module and logic path before deployment is impractical.
Adequate testing to assure quality in delivered military
systems requires concerted cooperation and intelligent
interchange of expertise among the system development
agency, prime contractor, formal test agency and user.
Effective and manageable test plans, test procedures,

A-22

test facilities, and simulation capabilities are as impor-
tant to the assurance effort as these elements have been
to hardware testing. All too often, however, test planning
for software has not received an adequate share of total
resources. The complexity of software design requires
automated aids to validate and test software products,
and significant time to verify that the product reflects
its design parameters. It is all too frequent that signifi-
cant shortcomings in functional and development specifica-
tions are uncovered only by errors occurring during software
testing and analysis. These errors are then attributed
to the "software", when they are more properly tied to
incomplete or vague functional specifications.

Independent Verification and Validation (IV&V) stra-
tegies and methods have evolved to help achieve better
results for assurance. Since the IV&V process is costly,
continues throughout the development cycle, and is a source
of critical review, it is difficult to implement on a
sustained basis. IV&V is often perceived as not being
vital to system development, and unnecessarily duplicative
of traditional design testing and assurance functions. But
IV&V, properly implemented early enough in the system life
cycle, can avoid surprises during development.due to design
flaws or requirements inconsistencies.

As automated systems become more complex, the soft-
ware which runs those systems also increases in complexity.
Simple methods which were adequate in the past for testing
and certifying operational and applications software, will
not suffice in today's environment. Sophisticated software
tools, test drivers and automated program test aids are
needed to provide assurance on a timely basis during devel-
opment testing and operational testing phases. Such tools
must themselves be certified and appropriate to the task.
Statistical models may be applied to the testing of complex,
multi-interface systems. Each overall program schedule and
its application of resources must recognize the essential
need for software testing, and provide it throughout the
program life cycle.

A-23

PROBLEM: A.5 Life Cycle: Transition

DESCRIPTION:

Until the DOD Acquisition Improvement Program, the DoD
had no guidelines on how to handle rapid technology
advances. These initiatives provide some answers to
the following questions: "Should the most recent tech-
nology be incorporated, or should state-of-the-art be
used with a planned product improvement approach to
follow? Should systems be required to be designed to
incorporate new technology in the future? Just how
should technology transfer take place--through specifi-
cation or through contractor initiatives? Lastly, how
can acquisition and support policy, procedure, and
skills keep up with the technology explosion?" The new
DoD directive favors the planned product improvement
approach. This concept for ECS has not been clearly
identified, nor have its implications been determined,
nor its acceptance been assured.

Rapid Changes in Technology - The very rapid change in
computer technology has a destabilizing effect on acqui-
sition and support engineering. For example, microproc-
essors and firmware are widely used in today's weapon
systems, yet wide acquisition familiarity, policy, and
support concepts have not yet caught up to the technology.
Contractual requirements intended for software had been
disputed by contractors as being inapplicable to firm-
ware, hence appropriate documentation had to be purchased
as a contract add-on. Rapid evolution impacts the avail-
ability of older devices to be used as spare parts for
installed older systems.

The economics of hardware and software costs are
shifting. Past engineering data is becoming obsolete
more rapidly. The arrival of Very High Speed Integrated
Circuits (VHSIC) will cause another new technology impact
that must be absorbed even before the microprocessor/
firmware issues may be fully resolved.

Microprocessors and Firmware - In current systems, micro-
processors and firmware are often used as cost-effective
replacements for previously-used special purpose analog
circuitry which was embedded in electronic components.

A-24

.. 1.. .. t

The use of commercially available digital components as
analog replacements not only improves the accuracy of
the composite device but also reduces its cost. On the
other hand, the firmware resident in these devices repre-
sents computer software.

Since firmware involves software, there are major
acquisition questions that must be addressed:

o What documentation should be required for

acquisition visibility and support?

o What standards should be imposed on the
firmware during development?

* What levels of testing should be required of
the firmware during acquisition and support?

o What development tools and facilities should
be acquired for subsequent firmware support?

o What architectural design requirements, if any,
should be placed on microprocessor arrangement
and firmware?

There is a problem relating to the development and
support of microprocessors/firmware in the areas of iden-
tification, labeling, definitions, etc. The problem stems
from the practice of attempting to force these devices
into either software or hardware guidelines. There must
be a distinction made. However, when this is done, it is
usually agency-unique leading to problems in transition
from agency to agency.

Formulation of a uniform policy concerning micro-
processor and firmware definitions, identification/label-
ing, concept of operations, configuration management
practices, HOL policies, and DIDs are needed to alleviate
these transition problems. For example, firmware, when
programmed, may have an almost unlimited number of possi-
ble configurations which are machine readable but which
require specialized equipment. Combining this with the
fact that both the program and the media embodying the
program must be controlled, adds to configuration manage-
ment implications. Labeling to identify the media, along
with internal configuration of the device and/or board,
further complicates matters if these techniques are not
well defined and standard.

A-25

It is very clear that there is no single cost-
effective answer to each of the above problems for all
applications. For a deeply-embedded firmware application
(where the firmware developed is integral to the hardware
of the component in which the microprocessor is embedded)
there is one set of answers. For the application where
the computer program is expected to change frequently
and firmware is used (in preference to software) for
cost or other technical reasons, the answers are dif-
ferent. There is a highly application dependent flavor
to the answers of each of the previously listed problems.

Impact of Future Technologies - The impact of future
technologies on ECS must be studied and guided. Skills
in new technologies are, by definition, limited. Impacts
of new technology on software design methodology have
yet to be determined. VHSIC and VLSI (very large scale
integration) still have unknown implications on system
architecture and software engineering. New advances
such as enhanced modular signal processors and highly
redundant systems must be quickly assessed as to what
their hidden software implications may be. The rapid
technology change must be a factor in the ECS standardi-
zation efforts with guidelines to assist in establishing
levels of standards and conditions for changing standards.
In short, our systems acquisition process, support
process, and policies must have the flexibility to adapt
to technological change.

Support of Automated Systems - Substantial support prob-
lems have been built into automated systems during the
devdlopment process. A principal factor has been the
inability of the developer to develop and validate sys-
tem and tactical software requirements, evaluate doc-
trinal problems, and perform user acceptance testing on
a systematic basis. Poorly designed requirements result
in costly delays and redesigns of systems and their asso-
ciated software, and have caused extensive modifications
after fielding. The problem is compounded by the sensi-
tive nature of the evolving systems software. Therefore,the developer must be provided adequate facilities and
other resources to perform his mission and to provide
adequate guidance to field users on employment of these
automated systems.

A-26

- ------

Problems During Development Process - Achieving effec-
tive post-deployment support for a system is greatly
influenced by actions taken during the development phase.
Specifically, consideration for support must be planned
for and built in during the development phase. In this
regard, there are a number of current deficiencies:

1. In general, the present management structure
at all levels has not been ready (or has lacked
the resources) to implement the changes necessary
to develop and support automation. Specifically,
a structure for research, acquisition, develop-
ment, and post-deployment support is needed.
Early and continuous involvement of independent
testing and support organizations with the
developer is another recommendation.

2. No integrated set of procedures, guidelines,
and standards are uniformly applied to the
development of automated systems.

3. One problem is the lack of identification, and
disciplined use of, an integrated, effective
procedure for system development. A plethora
of regulations, instructions, and directives
are currently used by the Services. These doc-
uments address the development of specifications
and documentation a well as procedures and
methodologies for quality assurance, configura-
tion management, and software development.

4. In general, a lack of concern during software
development has produced software with poor
attributes for in-service support. The software
in automated systems is characterized by poorly
defined function and interface requirements
and specifications, lack of proper modulariza-
tion, too great a use of machine-oriented
languages, and inadequate documentation.

Coordination of R&D - There is a need to coordinate the
full spectrum of R&D activities (Categories 6.1 through 6.3)
within the R&D community. This coordination would smooth
the movement of R&D work to operational use in fielded
systems.

A-27

B. Environment

The term "environment" includes all of the activities
involved in the development and in-service support of embedded
computer software. Problems included as part of environment
were divided into the four major sub-categories of disci-
plined methods, tools, reinvention, and capital investment.
The problems described under environment are more related to
"how3 software is developed than to "what" is developed.
The problems are interrelated within the environment category
as with the other software problem categories.

A-28

PROBLEM: B.1 Environment: Disciplined Methods

DESCRIPTION:

There is a wide range of system engineering and soft-
ware engineering practices within DoD and its contractors.
The practices range from well-disciplined approaches for
creating high quality software to undisciplined approaches
whose product cannot be controlled. DoD needs a consistent
approach that ensures quality software.

The current state of software engineering practices
is a hodge-podge of tools, techniques, and methods, and
exhibits a number of serious weaknesses. The variation
is both good and bad. The many ideas being tried reflect
the current nature of software technology. The variation
also inhibits movement of people because of retraining
and adds to managements problems in trying to do the work.

Contractors have a strong interest in trying to reduce
costs. They invest in software tools and software educa-
tion to promote productivity. However, these tools rarely
leave the contractors shops. Contractors tend to have a
stable set of tools which evolve over time. Government
shops are also stable, but have to cope with the delivered
software, no matter what tools are, or are not included
with it, and have to support many types of software over
a long period.

The lack of consistent, disciplined methods impact em-
bedded computer software because the software is developed
by many independent groups. The lack of consistency and
undisciplined methods make supporting such software diffi-
cult and costly. As a result, software is difficult to
manage, varies widely in cost, quality and maintainability,
and makes it extremely difficult to improve in the sense
of technology or quality.

The lack of a well-developed system or software engineer-
ing process is evident everywhere in the embedded software.
A well-defined software engineering process involves a set
of activities for developing and supporting software through
its life cycle. This process becomes the framework for a
set of consistent, integrated methodologies. A well-conceived 4
methodology is a repeatable human procedure which separates
the clerical aspects of an activity from the creative, in-
tellectual aspects.

A-29

Today's software includes elements of the above but
not in a coherent form which integrates separate activ-
ities into a consistent whole.

A-30

*PROBLEM: B.2 Environment: Tools

a DESCRIPTION:

Siftware is a labor-intensive technology. The EIA
reportL predicts that the software and services portion
of DoD computer system costs will increase from $4.6
billion (or 69%) in 1980 to $37.2 billion (or 81% of the
total) in 1990 (figures are 1980 current dollars). Note
that software cost already consume 69% (as of 1980) of
the DoD budget for computer systems.

The inefficient use of people is one problem fre-
quently cited for this task force. Software involves
both creative and mechanical activities. Most of the
investment in software tools and technology has been to
reduce the time spent on mechanical activities, such as
entering data, very little investment has been made to
enhance creative activities. Creative work involves
manual recording as ideas are developed, and extended
or discarded. Tbus, a significant part of software
development is the process of manually recording infor-
mation. Automation of these mechanical processes is
occurring (e.g., interactive terminals) but more is
needed to improve productivity and to establish more
consistency and discipline.

To increase productivity in ECS design, coding,
test, and support, as well as development management,
there has been emphasis on tools and procedures. To
avoid a problem of proliferation in the support activity,
the Air Force has considered common and modular tools
that could have wide-spread application. This introdvces
a number of new problems:

* First, there are no widely accepted productivity
measures for various tools nor combinations of
tools. Without such measures, and corresponding
productivity data, one cannot conduct trade
studies or assess whether or not the use of the
tool is warranted.

1"DoD Digital Data Processing Study -- A Ten Year Forecast,"
presented at the Electronic industry Association Fall Sym-
posium in October, 1980.

A-31

-

0

Secondly, for government developed standard
tools there are other problems that must be
resolved. First, the availability of the tool
may constrain a contractor to a particular and
unfamiliar, support computer. This, in turn,
may prohibit the use of his own tools with
which his people are familiar. Also, for govern-
ment furnished tools, which are required to be
used, the tool and its documentation must be
nearly faultless (i.e., meet specified require-
ments such as correctness, performance, optimi-
zation, accuracy, and robustness); otherwise,
the government is liable for contractor misuse
of the tool or resulting system and schedule
problems associated with the faults in the tool.
Lastly, standard tools and environments tend
to stagnate innovation in ECS development.

With these cautions in mind, uniform, automated soft-
ware design -nd support tools are needed which are portable,
where necessary, yet tailored to different ECS applications
and phases of the life cycle. If a development approach
using modules was used, the building blocks or components
would become technically stable, thus combining into more
reliable, quality systems.

In addition, as productivity trade studies and new
technologies lead to other tools, modular enhancements
can be made to an existing integrated development and
support environment.

Some candidates for automated tools with modularity are:

0 Software documentation system

0 Configuration management system

0 Data base management system

0 Management information system

0 Software libraries

* Improved ECS analysis tools (simulations,
diagnostic emulations)

A-32

Comprehensive software development, support and test
tools (specification development system, editors,
code syntax checkers, scenario generators, ISF and
operational test data reduction software, etc.)

Industry has been working on many of these tools. Their
effectiveness on productivity, both individually and in
combination, must be assessed for various application types.

Achieving Tool Uniformity - The approach used in developing
the F-15 software support facility illustrtates the level
of success possible in achieving tool uniformity between
today's fighter aircraft. The F-15 Avionics Integration
Support Facility (AISF) was developed internally by WR-ALC/
MMEC, beginning in late 1976. The approach taken for de-
velopment was to be as common as possible with the existing
F-1ll facility. This approach was intended to serve two
purposes: software would be transportable between facilities
and, by keeping the design concept as similar as possible, a
model would be available for scoping, pricing, sizing, etc.

The design approach involved a common support concept,
common processors and peripherals, common language (where
possible), and other common hardware where feasible. Also,
contributing to the decision to adopt a tri-Harris archi-
tecture for driving the dynamic simulation, was the fact
that the F-15 trainers had a tri-Harris/4 processor and
the OFP development software resided on a Harris/4 con-
figuration. While it was apparent from the beginning that
a majority of the F-1ll application software would not be
directly applicable to the F-15 due to the vast dif!e-ence
in weapon system mission and avionics system architecture,
it was believed that much of the top-level design and many
algorithms would be reuseable.

This reusability turned out to be true. While only a
minimal amount of software was directly reused, much of
the previously developed F-Ill and F-15 software was used
by extracting approaches, algorithms, and some code. It
was the opinion of personnel closely associated with the
F-15 development t1,t first, the development of the F-15
facility internally would probably not have been attempted
without the F-1ll model to follow, and secondly, the model
was of immeasurable benefit in establishing requirements
of the facility. It must be noted that the F-15 AISF
proceeded through development without major modification

A-33

4.

of requirements. It was also the universal opinion of
personnel closely associated with the background of the
F-15 facility planning, that facility requirements had
been grossly underestimated prior to using the F-1ll
facility as a model. A composite of the commonality
between the two facilities is shown in Table A-1.

As can be seen from this summation, virtually all as-
pects of the facility was maintained as common as possible.
While the benefits from this approach are not quantifiable,
it is highly probable that inadequate support would have
occurred if this approach not been taken.

Considerable effort in standardization of higher order
programming Languages (HOL) for ECS applications has been
expended. It is still necessary to establish more clearly
the productivity improvements in development and support
for various application types as a function of requirements
for efficiency, safety, rapid modification, and correctness.

Support Facilities -- Many facilities for inservice support
of software are hosted on computers designed for embedded
systems. Some of these computers are seriously constrained
in size (memory, speed and instruction set architecture),
support hardware (on-line interactive terminals, disk
space, etc.) and support facilities (utilities, data
management systems, debuggers, test tools, etc.).

A-34

F-15 AISF F-ill AISF COMMENT

Dynamic Simulation Tri-Harris 7 Tri-Harris 4 Software compatible,
Processors also compatible with

F-15 Trainer

Host Processor Interdata 8/32 Interdata 8/32 Identical
System __

Graphics Hardware Adage Adage Same-differed in
software imple-
mentation

Terminals HP 2645A HP 2645A Tdentical

Peripherals Virtually identical,
compatible

Dynamic Simulation Yes Yes Compatible
Shared Memory

Data Reduction and EMR 7000 EMR 7000 Identical
Analysis System
Hardware

Dynamic Simulation VULCAN VULCAN Identical
Operating System

Host Processor Mod Interdata Mod Interdata Identical
Operating System

Cockpit Mockup Lab set-up Lab set-up Similar

Simulation Used similar
approach and many

algorithms

Overall design Similar
Approach

Dynamic Simulation Same
Processor Tasking

Table A-i: F-15/F-111 Common Facilities

A-35

Machine and Language Proliferation - Currently, more than
44 different computer languages are in use on Army battle-
field automated systems. Types of language range from high-
order languages (HOL) to assembly and machine languages
and microprocessor instructions. A survey indicates
there are 10 HOLs in use. These HOLs are COBOL, EUCLID,
FORTRAN, JOVIAL, PASCAL, PL/M, TACPOL, CMS-2, ATLAS-E,
and MOTEL.

The situation is exacerbated by the number of dialects
that exist for a given HOL. For example, FORTRAN programs
are not necessarily transportable across machines because
of deviations in language definition and implementation.

The survey also shows at least 24 different assembly
languages, and at least 10 different microprocessors.
Clearly, the proliferation of languages increases all
types of support required from training to documentation.
This proliferation is not technically necessary but results
from the autonomous development of each system.

DoD instruction 5000.31, "Interim List of DoD-Approved
High Order Programming Languages," provides a first step
to curtail the proliferation of languages within the DoD
by requiring a system developer to choose from a list with
a limited number of HOLs when a new system is developed.
An effective interim language standardization program in
the Army, and use of the DoD standard language, Ada, when
available, are essential to the Army to minimize support
costs and maximize the availability of programers trained
in the approved language.

Lack of Consistent Standards for Software - The lack of
consistent standards causes many problems in the software
acquisition and development process. The multiplicity of
conflicting standards, and the problems in interpreting
these standards forces software professionals to spend
time studying variations of standards instead of producing.
Good standards are missing in the critical area of software
quality.

Application of Consistent Standards for Software -
There is a great variation in the software development
practices and standards employed across DoD projects. The
lack of uniform standards can contribute to maintenance
difficulty, and re-engineering of the software upon
transition to a new support group.

A-36

Lack of a Standard Tool Set - Many tools are needed for
developing software. These include: editors, debuggers,
library managers, data base managers, high level languages,
etc. These tools are often not available, unpublicized,
difficult to understand or use, or inefficient. Software
piofessionals are often unaware of the tools and models
that could save them considerable amounts of time.

Inadequate Support Systems - The computer support of
software development is inconsistent. A real need exists
for a system that supports the full life cycle of software
development. The system should be fully automated and
support the full cycle: requirements analysis, specifi-
cation, design, implementation inservice support (for en-
hancement and correction of errors), correctness analysis
and management.

Promulgation of Tools - There are difficulties in transi-
tioning generic or non-weapon specific software tools
(general tools developed by laboratories) from 6.3 programs
to weapon systems programs. The reasons for this are
perceived to be the following:

The risks associated with GFE (performance of tool
accurate documentation, government liability on
adverse schedule impact).

The need for continued maintenance of the tools by
the government.

o Competitive implementations by industry.

The fielding of the Air Force JOVIAL J-73 compiler should
provide some insight into this problem.

Inadequate and Non-Modular Tools - Software problems
associated with military embedded computer systems are
well known. "Excessively expensive, untimely, difficult
to maintain, non-responsive to user requirements, inflexible
to change, unreliable. . ." are all common criticisms of
most systems developed to date. The inadequateness and
lack of standardization of the development and support
environment has cosntributed significantly to th. perpetu-
ation of many of these problems.

A-37

4

One aspect of the environment involves the software
tools which can provide support in virtually all aspects
of the programming process. However, support tools have
fallen far short of their potential value. It is worth-
while to consider some of the problems which have impeded

*- the progress of support tools to date.

Non-Reusabilit. The proliferation of programming
anguages and computers has given rise to a situation
where most developers find themselves with a unique
combination of language and host/target processors.
Consequently, existing tools cannot be used and new
tools must be developed.

Minimal Tools. Because tools have been developed
by the project for the project, resource constraints
(manpower, funding, time) have usually compromised
tool development in favor of the embedded application.
The result is that only the minimum number of essen-
tial tools are developed. There have been cases
where a language processor (compiler/assembler)
was the only tool available.

Lower Standards. Because the embedded system is the
focus of a development and not the tools, which are
often not even deliverables under a contract, a
significant lower level of quality results. Tool
designs and implementations are typically ad hoc
and poorly documented.

"Bag of Tools" Approach. Tools have usually been
viewed as semi-independent functions. Their imple-
mentations reflect that view and the result is a
non-uniform," often unfriendly," user interface.
A command to one tool is often very different than
the command to another tool, even when the objective
is identical. For example, END, STOP, EXIT, HALT,
might appear across several tools as the command
for stopping. A "uniform" interface would allow
the use of a single command, independently of the
tool being accessed.

Some tools are designed in a way that makes their
use extremely awkward. Command strings like **/%
and the absence of feedback prompts to the user,
make a tool very clumsy to use and present an un-
friendly interface.

A-38

The "bag to tools" approach also causes common sub-
functions across tools to be unrecognized; the re-sult is unnecessary duplication.

Language Independence. Well intentioned tool
designers often seek to maximize the utility and

flexibility of a particular tool and strive for
language independence rather then support for a
specific language. Their objectives have been
narrowly focused on the tool rather than the
larger environment of which that tool is a part.

Each of these problems has contributed significantly
to the present day software dilemma of embedded computer
systems. If they are to be solved in the future, a new
view of the entire environment and tools in particular,
must be taken.

A System View - It seems clear that if a dramatic impact
on the software problems is to be achieved, support tools
must be viewed as a system having five broad objectives:

o Integration. Each tool element must be considered
in relation to the entire environment and not
narrowly founded. Tools ought not to be viewed as
a collection of independent entities, but rather
an integrated set of cooperating functions which
are designed to provide a uniform, powerful, and
friendly interface.

o Support Throughout Entire Life Cycle. Tool use
should nnt be limited to development activity. In
service support, which represents a significant
portion of life cycle cost, should be viewed as an
extension of development and not as a detached ex-
ercise in field mpatching" (because the percent is
system dependent). A tool system should allow
support to occur in the same environment as that
of development. The complete history of a program
should be available to implement and validate
post deployment changes.

Standardization. Tools should be standardized to
the maximum extent possible, and designed and
implemented for the ease with which they can be
transported and reused across a number of host
processors.

A-39

o Support of the DoD Common Language. The tools of
the environment should be oriented toward a single
higher order language and should encourage and
strengthen its use. The DoD common language
(presently referred to as "Ada") is an appropriate
choice as the central language. Whenever the dilemma
of generality verses stronger support for the DoD
language ariscs, the latter should be chosen.

Flexibility and Maintainability. The tool system
should be designed in a way that simplifies the ease
with which evolutionary changes can be incorporated.
Changing programmer needs and technology advances
will require an extremely flexible tool structure.
The tool system should be carefully designed, well
documented, and written in the DoD common language
to simplify the tool maintenance problem.

An initial tool system might consist of (but not be
limited to) the following major functions:

o A text editor strongly focused on the DoD common
language for entering and modifying source prog-
rams. The editor would be language structure
oriented (rather than line oriented) and would per-
form elementary lexical and syntactical checking.

o An Ada Compiler which accommodates the language re-
quirements and whose design is modular and compatible
with the requirements for secure operating systems.

o A configuration/module manager which oversees the
activities of module generation, interconnection,
and maintenance in an environment strongly oriented
toward the language.

o A linkage editor which integrates separately com-
piled modules into larger units.

o A symbolic program executor (static debugger) which
provides statisitical information based upon the
symbolic execution of a source program.

0 A collecti:n of documentation aids which assist in the
generation and modification of software documentation,
and which uupports the user in selective reading.

* A dynamic symbolic debugger which supports program
debugging in the target environment at the DoD common
language level.

A-40

PROBLEM: B.3 Environment: Reinvention

DESCRIPTION:

Many software design and implementation problems are well
understood and continually recur in new systems. Unfor-
tunately, the designs and implementations of previous
systems are not captured and reused in succeeding systems.
Thus, a significant opportunity for productivity improve-
ment is lost.

Two elements are described to address this serious problem:
reusable components and program skeletons. Reusable sys-
tem components are commonly recurring components which can
be designed and implemented once, with appropriate para-
meters for tailoring to different applications; these
components might include firmware. Program skeletons
provide the structure into which application-specific
modules can be incorporated.

Three elements are needed to support and encourage reuse-
able components:

Interface Standard - A rigorous interface standard
must be provided for all candidate reusable com-
ponents; it would govern design, implementation,
and documentation.

Library - A library of reusable components must
evolve for use by all development activities.

Index - An index of reusable components including
summary descriptions and specifications, must be
provided to help the designer locate appropriate

*components.

Program skeletons require a similar set of support elements:

SDesign Standard - A rigorous design standard must
be provided tor any major software system or
subsystem to be implemented as a skeleton.

Skeleton Librar - A sparse library of subsystem
or system skeletons must be provided for use in
new development activities.

* Supporting Tools - A set of supporting tools must be
implemented to aid in the expansion of the skeletons.

A-41

4

PROBLEM: B.4 Environment: Capital Investment

DESCRIPTION:

Limited Support Facilities - Many of the DoD computer
support facilities are over-loaded and have aging computer
equipment. Many are even hosted on target computers -
the computers which are embedded in the weapon systems.
This penny-wise, pound-foolish approach maximizes the
value of computer hardware at the cost of people, a much
more scarce and costly resource. The support facilities
need more power to reduce the necessity for professionals
to do repetitive, mechanical tasks. Computers are supurb
at doing detailed, repetitive work and should be used to
do more of it so the professionals can concentrate on
the creative, intellectual work, work which computers
cannot do.

Use of Target Hardware as Host - The use of target hard-
ware to develop software is severely counterproductive.
Target hardware is designed with stringent size and weight
constraints to perform a specific military mission, is it
not designed to support software dEvelopment. The many
tools, utilities, testing aids, text editors, libraries,
and data base managers needed to support development
simply don't exist. Commercial computers also reduce
training costs because more people know thefa systems.
Plus many more tools exist for commercial computers.
There is a one time investment necessary to replace
target computers with commercial computers to host de-
velopment, but the benefits are significant.

IR&D for Software Technology - During this investigation,
several assertions were made that software technology
suffered in the Independent Research and Development
(IR&D) arena. The consensus of those discussing the
problem was that software projects received lower scores
than hardware projects during IR&D reviews. A number of
reasons were given for this problem, including:

IR&D evaluators are not often software oriented.
Some thought that part of this reason revolved
around the fact that software technologists thought
of IR&D reviews as mundane work not worthy of

A-42

their effort. Others thought that DoD did not
place enough emphasis on getting the right people
to the reviews. It is probably a little of both.

* Software results are not tangible, that is, you

cannot touch or see the results.

* There is a lack of good ideas for software research
projects. This reason is the most far reaching of
the three, and is the most d.fficult to resolve.
Some took the position that "ideas attract money"
rather than the reverse. Some very knowledgeable
people felt that IR&D was sufficient to fund the
really good software ideas.

While there was considerable agreement that software
received lower scores, there was not total agreement on the
effect on IR&D software expenditures. Generally, it was per-
ceived that some companies let this affect the distribution
of resources; however, some felt that software oriented
companies had no choice but to place IR&D resources in soft-
ware projects, and did so.

A-43

..

C. PRODUCT

The software product is frequently critized. This is
partly because software must solve many of the problems in the
hardware and these are usually discovered late in the develop-
ment cycle. However, software also deserves much of the criti-
cism directed at it. It is costly to develop and support, diffi-

* cult (if not impossible) to understand completely, and its per-
formance cannot be measured very well. The product section
addresses the utility of software, metrics, design attributes,
and documentation.

A-44

PROBLEM: C.1 Product: Doesn't Meet the Need

- DESCRIPTION:

Ambiguous Requirements - Ambiguous, unclear, and incomplete
requirements coupled with inadequate communication between
the user and implementor often causes undetected omissions
or internal contradictions. These eventually result in
changes as clarifications are made to the system to correct
the problems. Close cooperation between users, implementors
and many others is vital to the development of a useful
system.

Completion Criteria - Since completion and performance
criteria are often inappropriate, incorrect, and imprac-
tical, product evaluation is difficult. The lack of
"lessons learned" feedback to the software development
community is a serious omission since such a mechanism
could provide useful information. The lack of completion
and performance criteria often lead to additional problems
such as determining when the system "works" (i.e., meets
performance specifications), or determining when the
system is "complete" (i.e., meets completion criteria).
Such problems are non-trivial yet are common.

Product Failures - ATE software and its ability to suffi-
ciently test line replaceable units (LRU) and shop replace-
able units (SUR) has not received a high level of attention
from management in the past. However, there are disturbing
trends in test results of our more complex black boxes and
boards. While it is agreed that there are multiple reasons
for CND results, such as personnel proficiency, intermittent
failures, etc., there are strong indications that incom-
patibilities between test equipment at the different levels
of maintenance contribute heavily to this situation. In
a majority of cases, this is due to software inadequacies
or can be corrected by software. The result of excessive
CND rates is additional spare cost to the service agency,
unavailability of prime equipment because of shortage of
replacement spares, and/or additional maintenance and
test costs.

An example of the severity of the problem can be seen
from some Air Force data on LRU and SRU RTOK/CND rates re-
lated to a front line weapon system. Some of the more com-
plex black boxes are experiencing RTOK/CND rates in excess
of 40%. In the short period of this study, it is impossible
to determine the costs associated with the part of this per-

A
l';i A-4 5

4

I

centage that could be reduced by better software or enhanced
testing methods. However, it is believed by very knowledge-
able individuals that a large portion could be eliminated.
The points made during this study indicate that further
study is warranted.

Also, see A.1 Life Cycle: Requirements for additional
details on problems that are closely related.

A-46

PROBLEM: C.2 Product: Software Metrics

DISCUSSION:

There is a lack of good analytical methods and hard
empirical data for software. It is needed as estimating
information for future cost and mission impacts which
are associated with decisions on embedded computer systems
(e.g., design methods, quality metrics, cost data, etc.).
The allocation of resources and estimation of costs asso-
ciated with embedded computer software development and
support are directly impacted by this lack of data.

There exist many software costing models and consider-
able amounts of data on software development; however,
the software cost models require inputs, such as size and
complexity of code, which are very difficult to estimate
early in a program. Reasonable estimates can only be made
when the software requirements and preliminary design are
complete (which is often after a contract has been signed).
Existing software metric data lacks the necessary parameters
to permit correlation with corresponding parameters for
new systems.

Individual companies collect data and corresponding para-
meters on their owy projects, but are reluctant to share this
data with the go nment since the information represents part
of that company's competitive edge and negotiating potential.

There are no validated models of life cycle costs and
productivities in ECS development and support beyond cost
estimation data. For example, difficulty with using current
models can be seen in these figures taken from a guidebook
on software cost estimating:

Project Forecast Actual Ratio
Total MM Total MM Forecast Actual

A 419.7 71.0 5.9

B 2288.5 991.7** 2.3

C 51.5 43.8 1.2

D 3298.7 514.8** 6.4

E 7.9 7.3 1.1

(** Contains some estimate-to-complete data, along with actuals.)

A-47

While such terms as supportability, correctness,
useability, transportability, reliability, among others,
are used to describe qualities of software, their inter-
pretation varies. The priority which one places on a
given quality factor may also vary according to system
application. To be contractually useable, these quality
factors must be carefully defined and capable of being
measured and verified in an objective manner and must
drive the acquisition to the desired result. Addition-
ally, threshold values for quality factors are needed
which will allow the acquisition agency to state their
order of importance for a particular software system.

Cost, schedule, and sizing data need to be gathered
from which models and metrics can be derived that can be
commonly agreed to within DoD. Projections of future
productivity improvements, learning curves, and skill
mix must be a part of these models and metrics.

Hardware/Software/Firmware Tradeoffs - The rapid advances
in computer hardware technology, specifically chip-siz
microprocessors, has added firmware to the lexicon of
the computer field. Traditionally, we have thought of a
computer resource as a marriage of hardware and software
- two clearly separable configuration items. Firmware,
a combination of hardware and software, is often being
given equal status with software and hardware. A number
of definitions of firmware are in vogue, the most common
state that firmware is:

o Reprogrammable hardware
O Hardware implementation of software
o Hardwired computer software
o Microprocessor software

For our purpose, firmware is best defined as a computer
program that has been physically fixed in the memory of

* a processor. The program, which may have been written
in a higher order language (HOL), exists in binary code
which is permanently stored in a memory device (i.e.,
read only memory or ROM).

The designer of embedded computer systems (ECS) t
* the option, with today's technology, to allocate I._

functions among the hardware, firmware, and sott, - ,i
a system. This design opportunity introduces i -

A

A-48

of concerns which must be addressed early in the system
life-cycle. Achieving the most cost-effective design will
require thorough trade-off analysis of the technological,
acquisition, operational, and support aspects of the system.

The added dimension of firmware introduces more questions
to be resolved and decisions made. Among the questions
that need to be addressed are:

o What functions should be allocated to firmware?

o How will the firmware be documented?

o What management and control procedures will be
applied to the firmware?

o What is the firmware maintenance philosophy?

o How will the firmware be supported?

The basic question, underlying all of the above, is
whether firmware is a subset of hardware, or a subset of
software, or a separate entity. The choice, which is
essentially a design decision, will determine the treat-
ment of specific firmware elements of a system. Standards,
procedures, and documentation requirements need to be up-
dated to aid in the decision process and to accomodate the

" .selected firmware option. Some firmware, which is "hardware
intensive," may be treated as a configuration item (CI)
while "software intensive" firmware could be covered as a
computer program configuration item (CPCI). The inter-
mediate categories of firmware need to be evaluated as to
whether they should be treated as, perhaps, a firmware con-
figuration item (FCI) or, as has been suggested, as a com-
puter program in hardware subset of a CI.

The problems associated with using firmware in an ECS
relate directly to the likelihood that a hardwired software
(i.e., the software part of the firmware) will change
during the ECS life-cycle. At one extreme is firmware
that is not intended to be changed. With a near zero
probability of changing the firmware logic and code, this
should be classified as part of a hardware CI and treated
accordingly. At the other extreme is firmware that should
be adaptable to changing operational requirements and thus
would be expected to be easily reprogrammable. In fact,

A-49

one of the trade-off considerations would be whether this
should be handled as downloadable software rather than as
firmware. The close similiarity of this software-intensive
firmware to software strongly supports treating it as a CPCI.

The intermediate classes of firmware have attributes
of both hardware and software in varying degrees. They
fit neither CI nor CPCI, but rather some combination of
the two. Changes to the hardwired software are not
planned although they are expected to occur. The de-
cision-maker is faced with the same question throughout
the acquisition process, should CI or CPCI standards be
applied to this problem? The real problem in achieving
a cost effective design in the presence of firmware is
to correctly assess the changes that may be necessary
during the life of the system and plan accordingly.
Perhaps a firmware documentation package is needed.
As a minimum, the current ECS documentation package
should be reviewed and adapted for use on firmware.

Impediments to Productivity - Human productivity in the
areas of software design and implementation has been
studied as a metric for.several years. It is difficult
to isolate the creative aspects due to its basic nature
and to the lack of consistent software languages, tools
and methods. Implementation is difficult to isolate, but
less so, as its basic nature and tools and methods are
better defined. Separation and measurement of creativity
and implementation may improve as Ada, with its improved
metrics, becomes widely used. Once the impediments to
productivity can be identified, improved methods or tools
can be developed to eliminate some of the bottlenecks.

A-50

.4l

=" PROBLEM: C.3 Product: Design Attributes

DESCRIPTION:

Importance - Software design can strongly influence cost
and schedule. There is a shortage of skilled design
personnel and design literature in the area of embedded
computer systems. Poor first designs are hard to correct.
An example of this is a recent experiment in industry to
test the effectiveness of two different programming lan-
guages. Independent teams with comparable experience were
assigned to the same development project but each used
different programming languages. The difference in basic
design between the two teams so influenced the effort that
no conclusions on the object of the experiments, the lan-
guage comparison, were possible.

Design concepts and constraints are driven by technology.
For example, in the world of "computer plenty" with the
use of VHSIC, designs of the software may be driven more
by simplicity and ease of understanding than by timing and
memory constraints (at least for some applications). A more
focused body of literature on software design as it relates
to system computational architecture and performance is
necessary.

Architectual Considerations - Software design for embedded
computer systems is constrained by computational system
architecture. Thus, it is important that software design
factors influence architectural structure, sizing, and
layout. Adequate timing resources, memory, word length,
and communication throughput are essential in the system
architecture to permit consideration of alternatives and
to promote simplicity in software design. As an example
of architecturally induced complexity, an engine control
system was implemented on an eight bit microprocessor
architecture which required double precision to achieve
necessary accuracy. The greater precision caused timing
and memory problems. Substantial tailoring of algorithms
was required, simplicity of design was lost, and testing
was severely complicated. The effort became so complicated
that it was substantially delayed. The root of the problem
was a lack of understanding of the application.

A-51

Distributed architectures and special purpose process-
sors require a systematic understanding of both hardware
and software design to achieve the desired processing
rates. The desire for continued operation when various
system components (computer or otherwise) degrade or fail
burdens software design with failure recognition, fault
isolation, and redundancy management. A better under-
standing of software design implications of various dis-
tributed, fault tolerant, computational architectures is
necessary.

The special areas of signal processing and flight
controls are examples of the need for understanding of
both hardware architecture, fault tolerance, and software
design in the environment of rigorous, intricate timing

:4 requirements. Software design implications, higher order
language utility, and testability all bear on these appli-
cations.

Security - Another challenging design problem is posed by
security. The system and software implementation must be
designed to prevent loss of sensitive security information,
to avoid inadvertent compromise of the data, to prevent
insertion of deliberate misinformation, and to eliminate
sabotage. A few aspects have been studied, such as multi-
level secure operating systems, but general design for
high reliability and high invulnerability is still notunderstood.

User Interface - Pilots, maintenance personnel, ground
support officers, communications officers, etc., interface
with systems through procedures and symbology implemented
in software. Well established design requirements for
software, which assure the best user-system interface,
still don't exist for most applications. The case of the
electronic warfare maintenance concept, described elsewhere
in this report, exemplifies a trial and error approach to
the user-system interface design problem. In the case of
pilots, additional function due to automation tends to add
to workload. An important objective should be to help re-
duce this trend through better software design requirements.

Testing will become more important as applications be-
come more complex, and more sophisticated. As all of these
requirements come about, software test criteria, test
philosophy, and test methods will become key activities.

A-52

Faulty Desi -- The problem of faulty design of software
N a major actor contributing to software development
overruns and a major contributor to a system's poor per-
formance during testing. There are many variables that
can cause a software design to be faulty or inadequate,
though not all faulty designs result in poor performance.
Each contributing variable will be mentioned and commented
upon.

In a parallel effort, where both software and hardware
design are concurrent, misunderstandings occur between
hardware and software engineers causing misconceptions
on the part of the software personnel as to how the hard-
ware works. In such a case, software development is
usually on a different processor than that for which the
software is being developed (or a stripped down prototypa
of the proper processor). When the actual complete version
of the processor becomes available, the software architecture
invariably requires changes.

During the system definition phase of a development,
inadequately defined requirements usually cause software
engineers to make assumptions relative to implementation
that may or may not be correct. The evolutionary design
concept, where a design develops as it is being implemented,
probably has been the biggest cause of faulty software de-
sign in the past in systems that were implemented using
assembly language. In those systems, the architecture of
the software and the design of many of the modules are
fixed early and become difficult to change or modify at a
later time as the requirements evolve. (Hopefully, the
use of higher order programming languages will alleviate
this potential problem.)

In connection with the above, the architecture of soft-
ware can lack modularity, i.e., be designed monolithically.
This results in a waste of memory since the software must
be duplicated each time it is needed rather than calling a
common function. The opposite of this is the highly effi-
cient, densely packed software (in assembly language),
which has no room for expansion or modification, and in
which even the smallest modification causes chaos through-
out the system. In both approaches, debugging can prove
difficult and time-consuming.

Improper selection of languages can lead to complications
in implementations since specific languages were designed
for particular applications. For example, the selection
of assembly language to perform scientific computations

A-53

. . * ** ..

causes a programmer to generate many lines of code which a
compiler could generate from a few lines of FORTRAN state-

N ments. The use of COBAL or BASIC statements to generate
the code for a real-time I/O interface could result in
processes whose run time is greater than the response
times required by the I/O.

Programming style also can contribute to faulty design:
the use of self-defining rather than labelled constants,
the use of implicit verses explicit addressing, and the
use of implied verses defined length for variables.
This becomes a major problem when personnel change in the
middle of a project and another programming style is intro-
duced which is not compatible. Conflicting standards, or
incomplete standards for interfaces, can contribute to
erroneous assumptions thereby creating erroneous design.

Lastly, differences exist between a "real world envi-
ronment" and the sterile environment of a computer labor-
atory.

Constraining Hardware - Many older systems have instruc-
tion set architecture constraints that make evolution to
an integrated system difficult or impractical. In most
instances, the hardware is very old and the software is
designed to minimize the impact to the system of the
hardware constraints, not to maximize the value and flexi-
bility of the software.

Unrealistic Objectives - Often the original objectives
are much too ambitious: a complex system is to be de-
signed, built and installed as one piece. The use of
monolithic rather than incremental development often leads
to cost overruns and schedule delays. Examples of this
approach are rife.

Design for the Complgte Life Cycle - Design decisions are
rarely made with the complete life cycle of the software
in mind. The design should consider the long period of
maintenance which is a reality for all weapon systems.
Proper design can reduce maintenance costs considerably
but this aspect of design is rarely considered. All re-
sources (i.e., hardware, software, personnel qualifica-
tions, etc.) needed for life cycle should be clearly
stated but rarely are.

A-54

...

Flexibility to Change Different weapon system elements
require different response times to anticipate and address
software changes. These can either be changes in the
threat or to upgrade system performance. System archi-
tecture and initial software design strongly influence
the ability of software to be modified. Other important
factors bearing on flexibility and responsive change
include pre-emptive engineering, test requirements, and
operational concept, advance intelligence information,
the support environment, communication of changes in
capability, operator procedure changes, and correlary
changes such as training requirements.

The Soviet REC Concept - Early in 1942, the Soviets em-
barked upon a combined arms concept for the employment
of electronic warfare assets. They have developed the
concept and fielded the equipment necessary to combine
fire power with classic electronic jamming on the battle-
field. This concept is referred to as Radio Electronic
Combat (REC). This concept targets all NATO and U. S.
Command and Control elements (control activity, communi-
cation links, and controlled entities). Even while the
build-up in REC capabilities has been accomplished, the
Air Force has increased its dependence on the electro-
magnetic spectrum. The fact that these two philosophies
are evolving, dictates that an ability to meet changing
REC threats is necessary in a timely manner.

Our ability to place ordnance on target is directly
tied to our effectiveness in countering the enemy's elec-
tronic threats. As changes occur, we must change our fire
control elements quickly and accurately. For example,
during test of our front line fighters as early as 1976,
serious problems were identified (barrage noise, tuned and
swept spot, deceptive techniques) which adversely impacted
putting radar-directed missiles on target. Findings from
the Tactical Air Warfare Center "Green Flag" exercise in
1979 were that deficiencies existed in subsystems, such as
terrain following radar (TFR), fire control radars needed
electronic counter-counter measures (ECCM) modifications,
and that present ECCM alternatives had not yet been ade-
quately exploited. Since that time, the Air Force has
expanded the concern to communications systems, bomb-
navigation systems, and TACAN systems. Lastly, threat
estimates predict that the F-15/F-16 radars and radios
were targeted by enemy REC. In addition, these estimates
expected JTIDS would also be targeted and the threat would
continue to evolve.

A-55

. . .". .

Rapid Change - potential flexibility afforded by
digitally controlled systems provides the basic attribute
for rapid changes. While a structure has been established
to reprogram electronic warfare (EW) assets to meet chang-
ing enemy offensive threats in a timely matter, no such
emphasis has been focused on systems such as fire control
radars to meet changes in enemy defensive techniques. Re-
sources needed to create a capability in this area are: the
establishment of a concept of operations for pre-emptive
and quick reaction capability activities; access to proper
intelligence data; and support capabilities and instrumen-
tation to support the concept.

Turnaround time on changes will depend on the complexity
of the system, the software design, the required change,
the skill and understanding of the software engineers, and
the extensiveness of required testing, not to mention
maintaining baseline documentation, configuration control,
and field operation information. These elements must be
made to interact to reduce the reaction time to the minimum
possible, and not to a normal block change time table.

Specific Iesign - Software developed for embedded computer
systems is normally tailored to the specific application
and the hardware environment. Requirements levied on the
developer frequently constrain the software design to the
hardware devices which, in turn, are constrained by the
mission needs. One of the most common problems confronting
the software designer/developer is the need to package the
software to optimize the available computer resources (size,
timing, and memory). Hardware trends toward physically
smaller devices (VLSI and VHSIC) are providing for faster
processing, more memory in a fixed volume, and a propensity
to design software modules optimized to these devices.
Adding to this the greater sophistication and complexity
of today's weapon systems, the tendency is to develop soft-
ware packages that are system unique, non-transportable,
and non-reusable (i.e., immutable software).

The inability to exploit previously developed ECS places
the acquisition agencies in the posture of having to pay
over and over again for essentially the same software.
Major contributions to this problem are: a lack of stan-
dard hardware; inadequate documentation of ECS; a lack
of standards for software development; and the inadequate
sizing, timing, and memory capacity of embedded computer
systems. A more generic problem is the inadequate transfer
of information about existing and available software re-
sources.

A-56

Software immutability can be overcome but it will re-
quire a major effort in government and in industry. Reluc-
tance in the program office and in industry to use software
developed for another purpose by other people can be ex-
pected. There is a need to establish a methodology which
addresses the design, development, test and documentation
of software specitically designed for reuse.

The most important action to be taken will be to ensure
that reuseable software segments are fully documented and
easily understood. This will require a careful analysis
of the present acquisition methodology to determine changes
needed to enforce reusability. Potential items that will
be impacted are:

0 Defense acquisition regulations
o Military standards and specifications
O Statement of work
* Work breakdown structure
* Data item descriptors
o Solicitation procedures
* Proposal evaluation criteria
o Source selection procedures
* Contract and project incentives

The potential of previously developed software should
be addressed as early in the acquisition cycle such as when
the mission element need statement is being formulated by
the combat developer with the assistance of the material
developer. It will be necessary to review the specifica-
tions and documentation of old, current, and future systems
for common requirements and applications. It is highly
likely that software modules exist, or are in development,
which implement some of the algorithms, interfaces, pro-
cesses or conditions cited in the need statement.

Even if the actual software is not reuseable, it is
possible that the functional design is directly applicable
and could be reused. The material developer should be alert
to the potential for moving software between systems.
As we proceed with efforts to standardize (e.g., hardware,
software, interfaces, .documentation, et al), the oppor-
tunities for reuse of systems, subsystems, and components
will increase, as will the visibility of candidates for
reuse.

A-57

byIdentifying reuseable software is severely hampered
by the poor quality of the documentation which purportedly
describes the functional design, detail design, and coding
of software. A major problem today is that the information
on other systems does not lend itself to reusability con-
siderations. Specifications are not written in a common
language and format, nor are they consistent in the
quality of information conveyed. There is a real need for
a standard for specifications. Ongoing efforts to produce
a single set of DIDs for software specifications will be a
significant improvement. Further steps are necessary to
de-personalize (both in terms of the system and the writer)
specifications to improve understanding. Perhaps a common
specification language could be built and provided to the
system developers in government and industry.

The key to improving the reuse of software is standardi-
zation. However, even if all facets of embedded computer
systems were standardized, there will continue to be extenu-
ating conditions and requirements for which one or more
standards will be waved. The continued growth and advance-
ment of technology should not be stifled by inflexibility
in standards. Standards must be compatible with the rate
at which technology is changing. All levels of management'
must ensure that the standards are adhered to, and that
there be positive control of deviations from and changes
to these standards. Specific to software reuse is the
need for standards in the areas of language, toolsets,
interfaces, modularity, design specification, documenta-
tion, coding, and the programming environment. A problem
that exists (and will persist) is how to ensure the mutual
compatibility of the standards. A control structure is
required to maintain the integrity of the set of standards
and provide assurance that the impact of a change in any
standard is considered in all other standards.

Reuse of software will have an impact on the planning,
award, performance,.and measurement of system and software
contracts. The major difficulty is in clearly and precisely
documenting the software to be reused: how it will be in-
corporated; the testing requirements; the data rights; and
the conditions under which the software can be changed.
This requirement applies to the government, when preparing
the procurement package, as well as to the contractor when
preparing the proposal. When the software to be reused
is government-furnished, problems, with attendant risk,

A-58

will arise if the software is not fully documented and
the conditions for use are not well defined in the con-
tract. The contract must clearly address the areas of
responsibility and liability so as to preclude conflict.
When the software to. be reused is contractor-furnished,
the government must be provided a complete documentation
package including test procedures and results as well as
a clear definition of any propriety rights claimed.

A-59

PROBLEM: C.4 Product: Documentation

DESCRIPTION:

Documentation plays several roles in ECS development
and support. During acquisition and support, documentation
conveys information on requirements, design and interfaces,
implementations, test procedures, and test results. Not
only does the documentation convey requirements and design
from one group to another, it also serves as milestones
for completion of certain activities.

In military systems, where budget varies and fluctuations
abound, documentation serves as a record of work completed
to date so that it may be possible to resume at a future date.
Also, documentation serves as a contractual requirement de-
scribing what must be developed as well as a record of what
has been developed. Documentation also serves as a baseline
against which changes may be assigned so that an orderly
and controlled engineering development and modification
can take place.

Acquisition - The problems with documentation are legion.
Formal documentation is described by data item description
(DIDs) which indicate the format and co-tent requirements
of each type of document. The numerous DIDs overlap in
content. The task of the acquisition agent is to select
and modify those DIDs appropriate to the system and its
future operational and support requirements. Since formal
documentation is usually deemed to be very expensive to
acquire and maintain, the acquisition agency may feel
pressured to mimimize documentation or, perhaps, to rely
on "informal" or "best commercial practice" documentation.

Neither of these last two types of documentation is well
defined; hence, the acquisition agent is not sure of what
the "paper product" will be like. Often, the agent acquires
the wrong type of documentation, documentation poorly
written, or documentation written tor the wrong level of
reader skill or background.

When a project begins to slip behind schedule, the
documentation discipline tends to relax and more reliance
on oral communication and human memory takes place. This
adds to the risk of miscommunication, and increases the cost
of subsequent documentation due to the need to reconstruct

A-60

forgotten concepts and details. In addition, when funding
is reduced, documentation is sometimes one of the first
items deferred or deleted by the acquisition agent.

After the documentation for a large system has been
prepared, changes to the system (even inexpensive changes
to implement) can have substantial impact and cost to
update the corresponding documentation that must be
fielded to represent the change for training, education,
and system or detail definition. Documentation is
usually labor intensive. The expense of maintaining the
baseline could be lowered by various technology thrusts.

Transition - One of the obstacles to the transition from
contractor development and support to internal support
is the quality of documentation of the system and system
software. Documentation is the mechanism for passing
knowledge from one group to another when the work moves
from the contractor to another group. Documentation has
long been considered by support agencies as a problem
area because: data packages are often incomplete; docu-
mentation often contains many inconsistencies, errors,
or ambiguities; data are withheld as proprietary; there
are delays in disseminating current and accurate docu-
mentation; and there are, at times, disagreements between
the acquisition agent and support agency as to what is
required.

Support - During the support phase, documentation serves
as a baseline from which modifications and upgrades can be
made either through contract or internal staff. However,
as during development, modification of documents is a
labor intensive task with much room for automation. In
one program examined, several man-months of design effort
were needed because documentation on an interfacing sys-
tem was inaccurate. In another case, a subcontracting
arrangement between the support system developer and the
airborne system processor vendor was required because
documentation had not been acquired.

The extent of documentation errors is not easy to
pinpoint. It is believed that, in many cases, little
effort is expended in "cleaning up" documentation. In
one case where documentation was moderately scrutinized,
literally hundreds of software documentation errors were

A-61

identified ranging from .°pographical errors to basic
inaccuracies. In another example, documentation and
support tools for internal support were delayed because
a major software package was not specified as deliverable
during acquisition.

Documentation Focuses on Details - Much documentation
for systems is weak and outdated. In most cases, there
is little or no formal documentation in the key areas of
software systems design, program design, system interfaces,
and correctness analysis. Documentation tends to be of
the minute details of program logic and is developed after
the fact. Documentation standards often are not evident
in the finished documentation.

System Documentation is Limited - System documentation
is often inadequate and incomplete. There is no standard
method for tracing system requirements through the software
development phases, nor to ensure that all design informa-
tion is accounted for and handled in the appropriate phase.
The lack of a complete project history, including design
decisions and the analyses that led to them, can waste a
lot of time if those decisions are reopened because of a
change in requirements or a reevaluation of the system.

A-62

D. PEOPLE

The rapid spread of digital technology into weapon sys-
tems has and will continue to manifest itself in a shortage
of skilled system engineers, software engineers and managers.
Advancing technology requires new systems skills and often
provides barriers to understanding for the uninitiated. Per-
ceived government-industry pay differentials and the military
rotation system aggravate the situation by prompting turnover
of experienced personnel and placing new, inexperienced people
in responsible positions.

A-63

PROBLEM: D.l People: Skills

DESCRIPTION

General - The skill requirements for ECS system engineers,
software engineers and management are interdisciplinary
in nature. For example, a software engineering team
developing or supporting avionics software must have a
functional understanding of radars, inertial navigation
units, weapons delivery and control, electronic warfare
control, air data computation, the flight environment
and the threat, as well as computer and communication
architecture, software requirements derivation, software
design, algorithms, code, checkout, simulation modeling,
integration, and software and system test including
support software development, test, and use. Software
engineering is not just programming. It is, in fact,
systems engineering at both the abstract level and the
detailed level. Software engineering is to programming
as systems engineering is to drafting. Support of ECS
requires the same knowledge and skills as development.

Communications - Different weapon system types require
different mixes of engineering and computer science
talents. The key skill is that of communication across
traditional academic disciplines. The engineer must
be able to understand and to be understood by the computer
professionals in order to evolve coherent software
requirements and designs. The true software engineer is
skilled both in traditional engineering and computer
science, and provides the interpersonal communications
for the multi-disciplinary team. Few universities have
developed such an inter-disciplinary approach to soft-
ware engineering; in fact, few universities teach software
engineering.

Currency - One key factor for both technical and management
personnel is currency. The transfer of new technology
from R&D activities to technical personnel performing
ECS tasks is very slow. Management personnel often lack
the technical knowledge and currency to manage complex
systems development and support activities because, not
being directly involved in the technology, they lose
direct touch with the rapidly evolving technology.

Government Acquisition/Support - In system acquisition
and support, the government needs adequate and mature
technical skills to prepare requirements and to monitor

A-64

developments. The government also needs managers who
understand the acquisition and support process and the
cost, schedule, performance, and risk impacts of de-
cisions effecting the software and, hence, the system.
Such skills are not learned quickly. The skill shortage
tends to manifest itself not so much in major, high
priority acquisitions since their priorities command
the assembly of the best acquisition talents in the
services. (Even high priority acquisitions have had
severe problems.) It is much more apparent in smaller
programs where less experienced government engineers and
managers are assigned high levels of responsibility.

Acquisition is not and cannot be taught in the uni-
versities. Graduating software engineers or computer
scientists usually want to practice their trade by
actually designing, coding, and testing software, thus
building their practical experience. They usually have
neither the desire nor the qualifications to perform
acquisition engineering activities such as preparation
and reviews of specifications or designs, or other tech-
nical activities. The software engineer must have
"hands-on" experience with several systems before
supporting an acquisition.

The skills to manage ECS acquisition and support
activities rest on a knowledge of general processes of
acquisition and support, and how ECS are similar to and
different from those processes. Again, there is no
formal instruction that is adequate to develope those
skills.

-p

A-65

..-

PROBLEM: D.2 People: Availability

DISCUSSION:

General - The demand for engineers and computer
scientists exceeds the supply. The demand for people
who are multi-disciplined in engineering and computer
resource areas, or who can communicate effectively in a
multi-disciplinary environment, even more sharply exceeds
the supply since those skills represent the intersection
of skill pools, each of which is in high demand. This
demand for skill exists both in industry and government.
The shortfall in supply just for programmers has been
projected to be 30% by 1985.

An example was cited where the lack of qualified ECS
personnel within a system program organization actually
degraded test planning and efficiency. The task of
reviewing the operational flight program listings and
patches fell on test personnel who did not have an
understanding of software. Project personnel felt that
without this software expertise, it was impossible to
plan the detailed aspects of the tests, such as test
sortie profiles and to test software changes accurately
and thoroughly.

Need - The government personnel shortage is couched in
terms of "supply and demand." The correct implication
is that the magnitude of the true need is not clearly
understood. There are no data on which to base estimates
on the number of software acquisition engineers or
managers needed for a project to reduce the acquisition
risks appropriately. The roles of these professionals
must be more clearly defined and related to the risk
characteristics of a particular system acquisition.

Policies - The Services have a fundamental policy of
rotation of officers to broaden their scope and enhance
promotional potential. It is not infrequent (particularly
in smaller programs) that this rotation policy replaces
a maturing software engineer or manager with one who has
not yet had the benefit of acquisition or support
experience. Furthermore, the capable personnel in this
area will often look for non-ESC assignments to enhance
their promotion potential even more.

A-66

Shortage of Skilled Personnel - The problems discussed
in the Air Force's description of the personnel skill
shortage problem are also applicable to Army battlefield
automated systems. There is a lack of adequate numbers
of trained civilian and military personnel to support
in-service requirements. If software support is to be
cost effective, there is also the need for a significant
percentage of the software development personnel to carry
over the support role.

Both the Navy and Marine Corps use the same personnel
for development and support. This is not usually the
case for Army systems. In general, at least 40% of the
resources required for development of software are required
for in-service support. Failure to have some of the devel-
opment personnel available for support could result in
increasing this ratio to over 75% of the development
cost.

Technical Experience - The Navy has become heavily depen-
dent on the support contractor for many life cycle manage-
ment activities due to a lack of experienced technical
personnel within the Navy. These technical activities
typically include: system design and trade-off studies,
change control, configuration management, subsystem
integration and test, system build and test, verification
and validation, quality assurance and control, and training.

Shortage of Qualified Personnel - There is a severe
shortage of qualified personnel in many technical areas.
There is a tendency to substitute large numbers of unquali-
fied or poorly qualified workers when qualified workers
cannot be found. Partly due to the severe personnel
shortage, there are problems in attracting and retaining
qualified personnel. Staff turnover can be crippling.

Reliance on Contractor - There is unusual reliance within
DoD on software contractors, both for creating the soft-
ware and managing the process. This reliance creates
problems when monitoring contractor performance, and is

* counter-productive to developing a good working knowledge
of software. As the percentage of work done by contractors
increases, the problems also increase. Turnover of per-
sonnel, lower quality of contractors, and long learning
curves contribute to the many problems caused by the
over-reliance on contractors.

A-67

.. -. _________

PROBLEM: D.3 People: Incentives

DISCUSSION:

Seller's Market - The environment created by the 'sellers
marketw for digital engineering skills has placed a burden
on ECS management in the retention of experienced personnel.
While it is generally felt that the majority of ECS engineers
leaving the government are migrating to industry, it was
found that many in civil service were actually transferring
to more desirable jobs in other Government agencies.

Reasons generally perceived as having the most impact on
retention were salaries, promotion opportunities, Government
*red tape," and lack of opportunity for career development.
While it was recognized that some progress had been made
in expanding the military's technical personnel requirements,
the fact remains that civil service qualification standards
do not recognize system engineering or software engineering
as a discipline. The present incentives actually encourage
change of positions and change of types of work; for exam-
ple, those in software support look at development as a
more glamourous and prestigious activity. Civil service
grade structures tend to support that perspective. Those
in acquisition tend to view contractor activity as more
rewarding.

Career Path - Career paths for engineers and other
people in computer related skills in both the military and
civilian areas do not possess sufficient growth. Excellent
technical people are often promoted out of their fields
into management, in spite of the fact that their expertise
is sorely needed at the technical level. Military officers
in some cases resign and return as contractors or civilians
to retain their computer skills and remain with specific
systems.

The Air Force software personnel shortage is due in a
large part to the fact that there is no formal, effective
career management program to attract and retain qualified
engineers and managers in the ECS disciplines. An effec-
tive career management program must provide for classifi-
cation and qualification fo standard adjustments, profes-
sional and continuing education, training, challenging
assignments, a means to track ECS skills, and the identi-
fication and communication of career paths for ECS per-
sonnel. The Oup or out" policy further contributes to
this mobility.

A-68

Incentives - Work incentives are often reversed: competent
personnel are overworked and inadequately challenged,
while their pay may be unrelated to competence and pro-
ductivity; incompetent personnel may be underworked
with their pay unrelated to productivity. Because of
salary shortcomings, the ability to attract highly
qualified people in substantial numbers does not exist.
Thus, even if the use of contractors were abolished,
the current salary scales would not be sufficient to
fill the gap. The current salary structure draws average
and some above average peop12.

Another important reason for problems in career develop-
ment is the lack of reward for excellence. This is direct-
ly attributable to a lack of success criteria within the
ECS engineering discipline. Data pertaining to these
areas need to be gathered and formulated into accepted
standards.

Recruiting - It is perceived that the Government is
outbid by industry for the services of more desirable
candidates. Reasons given for industry's advantage are
higher pay, paid plant visits for prospects, and restric-
tive civil service hiring practices. Personnel interviews
and documentation research cited manpower shortages of
up to 40% of that required for task accomplishment. With-
out exception, those interviewed cite difficulty in fill-
ing open positions with experienced, highly qualified
personnel, with grade and salary restrictions given as
the major cause.

A-69

I "

APPENDIX B

Previous Studies on Software Problems

f.4.

INTRODUCTION

Appendix B contains a brief summary of a number of
existing studies on software-related issues. These studies
were cited by the task force members as applicable to the
effort and include DoD reports as well as reports from all
three Services. Software problems identified in each report
are referenced via codes (e.g., A.2, B.1 and C.2) to detailed
discussions in Appendix A, Problem Taxonomy and Descriptions.
The use of a problem taxonomy permits problems to be easily
referenced and cross-indexed within all parts of this report.

B-1

List of Studies Summarized

TITLE PAGE

B.l Candidate R&D Thrusts for the Software 5
Technology Initiative, 5/81. (The short title
used in Figure B-I, The Problem/Study Matrix
is STI.)

B.2 Chief of Naval Material Task Force on Tactical 7
Digital Standards, Undated draft, estimated
@1981. (TADSTANDS)

B.3 Assessment of Naval Weapons Software System: 8
Initial Analysis of Eighteen Software Systems,
Undated-@1980/81. (NAVSEA)

B.4 Software Engineering Automation for Tactical 9
Embedded Computer Systems (SEATECS): Functional
Analysis, 10/15/80. (SEATECS)

B.5 NCCS Ashore Software Audit, 9/30/80. (NCCS Audit) 10

B.6 Software Support Facility Investigation, 12
9/17/80. (SSF)

B.7 Report of the Department of Defense Instruction 13
Set Architecture Standardization Panel to the
Management Steering Committee for Embedded
Computer Resources, 3/26/80. (DOD-ISA)

B.8 Report on COMPREP (Composite Reporting) System, 14
CNO Project X/C 13, 12/75. (COMPREP)

B.9 Survey of Navy Tactical Computer Applications 15
and Executives, 10/75. (TCA&E)

B.10 DOD Weapon System Software Management Study, 16
6/75. (DOD S/W MGMT)

B.11 Proceedings of the Joint Logistics Policy Coor- 18
dinating Group on Computer Resource Management,
11/81. (JLC)

B-2

--

PAGE

B.12 Post Deployment Software Support Concept Plan 22
for Battlefield Automated Systems, 5/80. (PDSS)

B.13 Proceedings of the DARCOM Tactical Computer 24
Software Conference, 21/7/78. (DARCOM)

B.14 Second U.S. Army Software Symposium, 10/78. 27
(S/W SYMPOS-78)

B.15 Long Range Plan for Embedded Computer Systems 30
Support, 10/81. (PLAN ECS)

B.16 Studyof Civilian Engineer Recruitment, Reten- 32
tionvnd Use Throughout the Joint Logistics
Commands, 10/81. (JLC-ENG)

B.17 Summary Report of Audit, Management of Embedded 36
Computer Systems, 10/80. (AUD/MGMT ECS)

B.18 A Study of Embedded Computer Support Phase II, 39
9/80. (ECS-II)

B.19 Final Report of the Software Acquisition and 42
Development Working Group, 7/80. (SADWG)

B.20 Predictive Software Cost Model Study, Volumes 45
I-I, 6/80. (S/W COST MODEL)

B.21 Software Requirements for Embedded Computers, 46
A Preliminary Report, 3/80. (S/W REQ-EC)

B.22 Computer Software Contract Administration, 2/80. 50
(S/W ADMIN)

B.23 Final Report of the Joint Logistics Commanders 52
Software Workshop, 10/79. (S/W WORK-79)

B.24 Proceedings of the Joint Logistics Commanders' 54
Joint Policy Coordinating Group on Computer
Resources Management, 8/79. (MGMT-79)

B.25 Computer Technology Forecast and Weapon System 56
Impact Study, 12/78. (COMTEC-2000)

B.26 Operational Software Management and Development 59
for U.S. Air Force Computer Systems, 1977.
(OPER S/W M&D)

B-3

I

A. LIFE CYCLE B. ENVIRONMENT C. PRODUCT D. PEOPLE

z0

-W

E I

1NAVY 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3

1. STI 5/81 * * * * * * * * * *

2. TADSTANDS @81. * *

3. NAVSEA @ 80/81 * * * * *

4. SEATECS 10/15/8(,

5. NCCS 9/30/80 , , , * * * ,

6. SSF 9/17/80 ,

7. DOD-ISA 3/26/80 ,

8. COMPREP 12/75 ,

9. TCA&E 10/75

1O.DOD S/WMGT 6/75 , * *

11. JLC 11/81 , ,

12. PDSS 5/80 ,

13. DARCOM 11/7/78 * , , , ,

14. S/WSYMPOS-78

AIR FORCE

15. PLAN ECS 10/81 , , , * , , , , , , ,

16. JLC-ENG 10/81 , *

17. AUD/MGCM ECS * * * * * *

18. ECS-II 9/80 * * * * * * * * * *

19. SADWG 7/80 * * * *
6680

20. S/W COST MODEL *

21. S/W REQ-EC 3/8(* , * , *

22. S/W ADMIN 2/80 • * * -

23. 10/79 , , , ,
S/W WORK-79

24. MGMT-79 8/79 * * * ,

25. COMTEC-2000 * * * * , * ,

26 OPER S/W M D 78 * * * * * *

FIGURE B-I THE PROBLEM/STUDY MATRIX

B-4

B.1 Candidate R&D Thrusts for the Software Technology Ini-
tiative, Samuel T. Redwine, Jr., Eric D. Siegel, and
Gilbert R. Berglass, May 1981. (STI)

Funded by: Office of the Undersecretary of Defense for
Research and Engineering (Electronics and
Physical Sciences)

Objectives: "to lay the framework for the process of
identifying, assessing, selecting, and
initiating research and development thrust
to solve problems common to all services
and DOD components."

Methodology: The candidate research and development
thrusts were compiled from recommendations
in published reports and from suggestions
submitted to DOD in response to public
announcements of the Software Technology
Initiative.

Structure: Five sections: Introduction, Short-Term
Payoffs, Medium-Term Payoffs, Long-Term
Payoffs, and Summary. 6 Appendicies:
Descriptions of Candidates, Other ideas,
Software Problem Areas, Summary of Some
Reviewed Studies, Evaluation Considerations,
and Software Initiative Questionnaire.

Problem Areas: A.1, A.2, A.3, B.2, C.1, C.3, C.4, D.1,
D.2, D.3

Details of Problems Addressed

A.1 Requirements: Lack of usable, comprehensible,
measureable, validated requirements for goals;
inappropriate levels of detail.

A.2 Management: Lack of good models for schedules,
budgets, and sizing; inadequate cost and schedul
monitoring.

A.3 Acquisition: Lack of standard methodology;
inappropriate construct type; management of
trivial details from high levels of authority;
rights not acquired to software embedded in
system; rights not acquired to software tools
used to develop software.

B-5

B.2 Tools: Flawed and conflicting standards;
software tools that are: unavailable,
unpublicized, hard to use, inefficient, and
unevaluated; poor test environment.

C.1 Doesn't Meet the Need: Lack of a "lessons
feedback loop to the software development
community; lack of communication between
users and implementers.

C.3 Design Attributes: Inappropriate hardware
constraints; performance goals too high.

C.4 Documentation: Lack of a project history with
design analyses and decisions; lack of phase-to-
phase continuity (traceability).

D.1 Skills: Poor design skills; weak project
leadership and coordination; unsuitable
measures of competence; poor training.

D.2 Availability: Shortage of qualified personnel
and a tendency to substitute poorly qualified
personnel; high turnover.

D.3 Incentives: Incorrect job grades and descrip-
tions; no career paths, pay unrelated to
competence.

B-6

B.2 Chief of Naval Material Task Force on Tactical Digital

Standards, undated draft, estimated @ 1981. (TADSTANDS)

Funded by: Office of the Chief of Naval Material

Objectives: Analysis of advantages and disadvantages of
the NAVMAT Tactical Digital Standards on
Computers and Software.

Methodology: N/A

Structure: The report of the task force is in chart form
as delivered in January, 1982.

Problem Areas: B.1, C.3, D.1, D.2

Details of Problems Addressed

B.1 Disciplined Methods: Standards not adequately
and uniformly applied; in-process verification
of standards is spotty; no accountability
of project managers who ultimately back off
standards; contractors convince managers to
try non-standard approaches.

C.3 Design Attributes: Request For Proposals (RFPs)
don't address design features which facilitate
change and re-use.

D.1 Skills: Project managers lack knowledge and
experiences to properly manage software.

D.2 Availability: Current and growing shortage of
software engineering and management personnel.

B-7

B.3 Assessment of Naval Weapons Software Systems: Initial
Analysis of Eighteen Software Systems, Bennet P. Lienta
of UCLA and Peter Wegner cf Brown University, 1980. (NAVSEA)

Funded by: Assistant Secretary of Navy (RE&S)

Objectives: "to assess the current state of Navy computer
systems in order to provide a basis for improv-
ing their cost, reliability, and performance."

Methodology: Analysis based on data from eighteen Naval and
Marine Corps computer systems at eight sites.
A data collection form was developed to serve
both as a means for gathering information about
Naval computer systems and as a vehicle for dis-
cussing computer systems with installation mana-
gers, designers, maintainers, and implementers.

Structure: Five chapters: Introduction and Scope of the
Study, Methodology of Data Collection, Tabular
Summary, Analysis Results, and Conclusions and
Recommendations. Appendix: Data Collection Form.

Problem Areas: A.l, A.2, B.4, C.4, D.l, D.3

Details of Problems Addressed

A.1 Requirements: Inability to verify requirements;
correlation of requirements to design; control
of requirements.

A.2 Management: Insufficient Quality Assurance (QA)
and Configuration Management (CM); lack of
tracking systems.

B.4 Capital Investment: Insufficient timesharing
base; insufficient automated support.

C.4 Documentation: Lack of adequate user and
training documentation; inadequate application
of standards.

D.1 Skills: Long learning curves; turnover in
personnel.

D.3 Incentives: Salaries and career paths of
military and civil servants inadequate.

B-8

B.4 Software Engineering Automation for Tactical Embedded
Computer Systems (SEATECS): Functional Analysis, Systems
Consultants, Inc., October 15, 1980. (SEATECS)

Funded by: Naval Ocean Systems Center

Objectives: This report documents the results of a func-
tional analysis of the Fleet Combat Direction
Systems Support Activity at San Diego
(FCDSSASD), capacity to develop and support
computer programs for embedded computer
systems.

Methodology: A model was developed based on the current
and projected (through 1990) mission responsi-
bilities and resources.

Structure: Six sections: Introduction, FCDSSASD Mission
and Functions, Functional Process Analysis,
TECS Workload Analysis, FCDSSASD Resources
Analysis, and Conclusions.

Problem Areas: B.4, D.2

Details of Problems Addressed

B.4 Capital Investment: Insufficient computer
resources to meet projected workload;
inadequate test equipment; inadequate tools.

D.2 Availability: Insufficient manpower of
required skill levels to meet projected
workload..

B-9

B.5 NCCS Ashore Software Audit, Lesko/Fox Associates, (now

Software A&E), September 30, 1980. (NCCS Audit)

Funded by: PME 108 (now PME 120)

Objectives: The audit team evaluated the software of the
four major subsystems of NCCS Ashore. The
objectives were to evaluate the quality of the
software from a management and software engi-
neering point of view, to evaluate the limits
on evolution of each subsystem, and to evaluate
the life cycle management and support facilities
of each subsystem.

Methodology: The audit team was composed of industry, uni-
versity, and Naval personnel. Interviews of
PME 108 personnel, support site visits, and
document reviews.

Structure: Six sections: Executive Summary, History and Over-
view, Objectives, Findings, Subsystem Evaluations
and Recommendations, and NCCS Ashore Recommendations.
An NCCS Inventory is included as an appendix.

Problem Areas: A.2, A.4, A°5, B.l, S.2, B.3, B.4, C.3, C.4

Details of Problems Ad-ressed

A.2 Management: Life cycle planning and management is
ad hoc; no means of measurement and effective control.

A.4 Product Assurance: Testing ad hoc; no tools
or procedures for system evaluation, e.g. per-
formance monitors.

A.5 Transition: Great variance in standards applied;
standards inconsistently applied.

B.l Disciplined Methods: Great diversity in software
engineering practices; ad hoc techniques.

B.2 Tools: Pocrly supported by automated tools.

B-10

"4 .. ;.; . -. . ; . _ ; •

B.3 Reinvention: Same functions reimplemented dif-
ferently and supported for each subsystem.

B.4 Capital Investment: Hosting on constrained target
computers; insufficient computer power.

C.3 Design Attributes: Software not well designed
for change.

C.4 Documentation: Insufficient documentation;
non-standard; out of date.

B-Il

B.6 Software Support Facility Investigation, September 1980.

(SSF)

Funded by: PME 108-5 (now PME 120-3)

Objectives: To summarize the projected NAVALEX software
development and maintenance workload through 1992.

Methodology: "A literature search was conducted to identify
documented expectations concerning the evolu-
tion of hardware and software technology dur-
ing the study time frame. A survey was
conducted by interviewing representatives
from government, industry, and academe.
Survey instruments were designed to elicit
information necessary for the study."

Structure: Two reports: "Software Support Facility
Investigation: Technology Survey," September 19,
1980 and "Software Support Facility: Cost and
Facilities Study," September 16, 1981.

Problem Areas: B4

Details of Problems Addressed

B4 Capital Investment: Insufficient computer
resource; inadequate tools.

B-12

B.7 Report of the Department of Defense Instruction Set Archi-
tecture Standardization Panel to the Management Steering
Committee for Embedded Computer Resources, March 26, 1980.
(DOD-ISA)

Funded by: Office of the Undersecretary of Defense
(Research and Engineering)

Objectives: In November 1978, the Undersecretary of
Defense, Research and Engineering asked
that a panel with DOD component represen-
tation examine the question of proliferation
of instruction set architectutes (ISAs)
in DOD systems.

Methodology: A panel was formed, studied the question,
sought the advice of industry, and recom-
mended standardization on a limited number
of instruction set architectures be adopted
as DOD policy.

Structure: Three sections: Executive Summary, History and
Background, and Recommendations and Rationale.
The last section contains three recommendations:
Proposed Instruction, Life Cycle Cost Model, and
ISA Development for Large Word Size Computer.

Problem Areas: B.2, D.2

Details of Problems Addressed

B.2 Tools: Use of assembly language and non-
standard High Order Languages (HOLs) for
implementation. Proliferation of ISA's
leads to need for multiple support tools.

D.2 Availability: Shortage of skilled personnel
exacerbated by proliferation of ISA's.

2

B-i13

B.8 Report on COMPREP (Composit Reportin5) System,CNO Project X/C 13, 12/75. (COMPREP)

Funded by: Chief of Naval Operations

Objectives: Evaluation of the COMPREP system

Methodology: Operational testing in four Atlantic Fleet
Ships in April - May 1975

Structure: Memo with attachments

Problem Areas: A.1

Details of Problems Addressed

A.l Requirements: Requirements defined by
computer specialists rather than ultimate
user; system does not meet the need.

B-14

B.9 A Survey of Navy Tactical Computer Applications and
Executives, Dorian Punj, Stuart E. Madnick, John D.
DeTreville, MIT Sloan School of Management, October 1975.
(TCA&E)

Funded by: Naval Air Systems Command
Naval Electronics Systems Command

Objectives: This document is the final report of a study
of current Navy operating system milieu. It
includes information about Naval tactical
computer applications, and in particular,
information on the major executives used in
these applications. Analysis and evaluations
of the various operating systems are presented
together with implications that these systems
have on the design of a family of operating
systems for future Navy tactical systems.

Methodology: Visits to Naval installations and facilities
to discuss current and future computer appli-
cations. Analysis of large numbers of docu-
ments concerned with Navy tactical executives.

Structure: Four parts: General Characteristics of Navy
Tactical Applications, Major Executives Used in
the Navy, Erecutives for Airborne Applications,
and Executives for Shipboard Applications.

Problem Areas: B.3

Details of Problems Addressed

B.3 Reinvention: Proliferation of operating
systems; reimplementation of like functions.

I
B-i5

B.10 DoD Weapon System Software Management Study, Johns Hopkins
University, Applied Physics Laboratory, (June 1975).
(DOD S/W MGMT)

Funded by: Office of the Assistant Secretary of Defense
(Installations and Logistics)

Objectives: "to identify and define (1) the nature of the
critical software problems facing the DoD,
(2) the principle factors contributing to the
problems, (3) the high payoff areas and alterna-
tives available, and (4) the management instru-
ments and policies that are needed to define
and bound the function, responsibilities and
mission areas of weapon systems software
management."

Methodology: Review of ten major previous DoD studies,
reviews of ten Navy and two Army Weapon
Systems, and summaries of discussions
with service organizations and industrial
software system contractors.

Structure: Eight sections: Introduction, Summary of
Recommended Actions, Review of Previous Studies,
Highlights of Weapon System Studies, Supple-
mental Discussions with Service and Industrial
Organizations, Discussion of Recommendations,
Subjects for Further Investigation, and Guide
to Appendices.

Problem Areas: A.2, A.5, B.l, B.4, C.3, C.4, D.l

Details of Problems Addressed

A.2 Management: Insufficient understanding by
managers; lack of software visibility; lack
of estimation techniques; inadequate cost and
schedule monitoring.

A.5 Transition: Unspecified maintenance pro-
visions; high cost of transition due to
inadequate provisions.

B.1 Disciplined Methods: Lack of software
engineering techniques; non-standard
languages.

B-16

BA4 Capital Investment: Support systems not
established.

C.3 Design Attributes: Inappropriate choice
of hardware; insufficient hardware capacity;
inappropriate hardware/software functional
division.

Lack of requirements for adaptability;
inflexible design; non-modular software
architecture.

C.4 Documentation: Inadequate documentation.

D.1 Skills: Insufficient understanding by

managers.

B-17

B.1l Proceedings of the Joint Logistics Commanders Joint
Policy Coordinating Group or Computer Resources Manage-
ment, Conputer Software Management Subgroup,
November 1, 1981. (JLC)

Funded by: DoD Internal

Objective: To: 1) Provide recommendations to the JLC
for (a) developing project management guide-
lines for selection of software documentation,
(b) the addition, deletion or modification if
documents in the JLC-list of software docu-
ments, (c) implementing the standard set of
software documents (JLC-list) within OSD/JLC/
Services, and (d) clarifying the relationship
between the DoD acquisition life-cycle (mile-
stones, phases) and the JLC-list of software
documents (TAB A, pg. 2); 2) Examine the
general problem of hardware/software/firmware
CI/CPCI partitioning and specification and
develop a set of criteria to aid in the
selection and documentation process (TAB B);
3) Evaluate the potential for utilizing
accreditation of computer architectures as
a viable tri-service computer acquisition
strategy and determine the role and impact
of MIL-STD-1750A, MIL-STD-1862 and DoDI
509.54 within the overall defense computer
acquisition standards (TAB C); 4) Evaluate
existing software cost estimating models and
recommending a tri-service approach to improve
software cost estimating methodology (TAB D,
pg. 1); and 5) Evaluate whether reusability
represents a potentially valuable concept to
reduce cost and elapsed time to develop
embedded computer system software; (if so)
what barriers must be overcome and how does

A the program manager and/or software manager
make reusability a reality.

Methodology: Ninety-two individuals from Government
and industry participated in a Software
Workshop, 22 thru 25 June 1981. Workshop
participants were divided into five
panels - one for each of the objectives
listed above. StuJy was a continuation
of the effort initiated during the first
software workshop held in April 1979.

B-18

Structure: TAB A - Report of the Panel on Software
Documentation.

TAB B - Report of the Panel on Hardware/
Software/ Firmware Configuration
Item Selection Criteria.

TAB C - Report of the Panel on Standardiza-
tion and Accreditation of Computer
Architecture.

TAB D - Report of the Panel on Estimating
Software Cost.

TAB E - Report of the Panel on Software
Reusability.

Problem Areas: C.2, C.3, C.4,

Details of Problem Addressed

C.2 Software Metrics:

a. Software Cost Estimating - "The panel
believes that no existing Software Cost
Estimation (SCE) model is sufficient to
adapt as an embedded computer system
standard." (Tab D - p. 36)

"The panel believes that a judicious use
of SCE models and methodology can
improve the acquisition and management
of software." (Tab D - p.36)

"The panel believes that an improved
.4 software cost estimating methodology

must be supported by gathering and mainten-
ance of an accurate, complete and coherent
database." (Tab D - p. 37)

"The panel recommends that JLC sponsor
a program to implement an improved SCE
methodology." (Tab D - p. 37)

b. Hardware/Software/Firmware Tradeoffs - The
study examines the problem of hardware/

B-19

--4

software/firmware CI/CPCI partitioning and
specification and develops a set of criteria
to aid in the selection and documentation
process, particularly as applied to firmware.

Basic questions addressed include: the allo-
cation of functions to firmware, the firmware
documentation, the firmware maintenance and
support philosophy and the applicable main-
tenance and control procedures.

There is an underlying question as to whether
firmware is a subset of software or a separate
entity. Firmware which is "hardware intensive"
may be treated as a CI while "software intensive"
firmware could be covered as a CPCI. There is
a grey area which should be treated as proposed
as a CP/H (Computer Program in Hardware) subset
of a CI.

C.3 Design Attributes: "In general, it was agreed that
a much greater degree of reusability of software
in embedded systems is achievable. Current existing
software cannot be expected to see much reuse, but
in the future, new software can be built for reuse."
(Tab E - p. 5)

C.4 Documentation: "The JLC-JPCGCRM-CSM should publish
a document selection guidebook for use by acquisi-
tion managers." "This guideline should address
both software and firmware." (Tab A - p. 17)

"Integrate revision of DIDs with the ongoing devel-
opment of a MIL STD for Embedded Computer Systems."
(Tab A - p. 17)

"Initiate an effort to investigate the ramifications
of Ada and other innovations on software development
and documentation." (Tab A - p. 18)

"The life cycle should be tailored to specific
projects and phases of development." (Tab A - p. 18)

"Retitle software DIDs as software/firmware" (Tab A -

p. 17)

B-20

"Standards, instructions, directives, guidebook,

training criteria, regulations and contractual
vehicles must be revised to identify the changes
which must be made to include the concept of
reusability. The JLC should foster preparation
of new policy documents to encourage and enforce
reusability." (Tqb E - p. 38)

"Exclusive use of higher order languages is a
single very strong necessary precedent for reuse."
(Tab E - p. 39)

"Research and development of new support tools
specifically to provide reusability are needed."
(Tab E - p. 39)

B-21

B.12 Post-Deeloyment Software Support Concept Plan For

Battlefield Automated Systems, May 1980. (PDSS)

Funded by: DARCOM

Objectives: Develop an Army-wide concept to achieve post-
deployment software support of Army Battlefield
Automated Systems.

Methodology: Task force of approximately 100 representatives
from Army agencies was formed to research doc-
uments, conduct interviews, inspect facilities,
and form working groups to address issues.
Questionnaires were distributed and telephone
surveys were conducted to collect systems
characteristics and PDSS planning and require-
ments data. Core group of CENTACS representa-
tives published concept plan report.

Structure: SECTION 1 - Introduction of PDSS Study

and PDSS Concept Plan

SECTION 2 - Findings of the PDSS Study

SECTION 3 - Software system structure and a
software support model for PDSS

SECTION 4 - Alternative approaches for PDSS

SECTION 5 - Recommended PDSS approach

SECTION 6 - Gross estimates of resources
needed (To be identified
separately).

Problem Areas: A.1, A.4, A.5, B.2, B.4, D.2

Details of Problems Adressed

A.1 Requirements: The report discusses the need for
a single integrated set of procedures, guidelines,
and standards uniformly applied to all BAS's
including systems interoperability.

A.4 Product Assurance: The report discusses require-
ments for testing for PDSS, including certification

B-22

test, verification and validation tests, PDSS
center debug, and integration tests and product
assurance tests. It discusses the impact of
unnecessary testing delays in fielding revised
software versions.

A.5 Transition: The report discusses the problems
of achieving effective Post Deployment Software
Support (PDSS) by actions taken in the develop-
ment phase and the need to plan for and build
in supportability early in the development and
acquisition phases.

B.2 Tools: The report discusses the impact of pro-
Ti1e-ration of computer languages in current BAS's,
prior to the adoption of standard HOL's, including
Ada.

B.4 Capital Investment: A separate report discusses
the capital requirements for establishment of
Software Support Centers (SSC) for Army BAS's.

D.2 Availability: The report discusses the lack of
adequate numbers of trained civilian and
military personnel to support PDSS requirements
and training needs.

B-23

B.13 Proceedings of the DARCOM Tactical Computer Software
Conterence, hosted by the U.S. Army Communications
Research and Development Command (CORADCOM) Fort
Monmouth, New Jersey, November 7, 1978. (DARCOM)

Funded by: DARCOM

Objectives: To bring together DARCOM elements engaged
in acquiring, developing, using and manag-
ing tactical computer software for the pur-
pose of discussing issues and problems and
enabling the exchange of information and

* ideas. The conference was oriented to the
Project Manager and his set of problems.

Methodology: The three day conference was organized
into the following broad topic areas:

o Tactical Computer Software Problems
as seen by DARCOM, the Project Manager
and the User.

o Software Acquisition and the Life Cycle.

o Acquisition Issues.

o Development Issues.

o Testing and Evaluation.

o Military Computer Family.

o Interoperability.

o Post Deployment Support.

The eight sessions included 25 individual
papers and time was allotted at each session
for group discussion. A technically cognizant
civilian and a general officer were selected
to co-chair each session to provide a reason-
able mixture of technical and management
expertise in addressing each area. A summary
session was provided for General Guthrie,
CG DARCOM, during which the general officers
presented a summary of issues raised during
each session. The conference was concluded
with remarks by General Guthrie assessing
the summaries and conclusions for each session.

B-24

- - . ..

.7

Structure: The proceedings of the conference are pre-
sented in two volumes, with the first
volume including a preface and conference
agenda and the results of the first five
sessions. The second volume includes
the results of sessions 6, 7 and 8 and
the chairman's summary add conclusions
for each session as well as concluding
remarks by General Guthrie.

Problem Areas: A.1, A.2, A.3, A.4, A.5, B.2, C.4

Details of Problem Addressed

A.1 Requirements: Inter-operability in existing
systems can only be satisfied by costly
modifications and fixes. Inter-operability
requirements can be satisfied if:

o interface requirements are clearly stated

o inter-operability concepts are well
understood

0 interface design planning is conducted on
the basis of a total integrated structure

Inter-operability requirements must address
some highly complex problems in network design.
(pp. 491-500)

A.2 Management: Problems facing the project manager
and DARCOM include a lack of overall basic policy,
procedures and standards to meet established
objectives. Issues include managing and con-
trolling the software life cycle and the role of
participants in software development and
acquisition policy and guidance.

A.3 Acquisition: Acquisition issues include
acquisition management, verification and
validation of tactical systems and software
development in a joint program.

B-25

A.4 Product Assurance: New approaches are presented
in support of tactical software test and evalua-
tion as seen from the project manager and the
TECOM (Test and Evaluation Command) viewpoint,
including considerations for IV&V. (pp. 305-345)

A.5 Transition: Substantial support problems in
automated systems result from actions taken in
the development process. Issues include post
deployment development and testing, software
logistics and post deployment software planning
activity. (pp. 691-701)

B.2 Tools: Issues addressed include the develop-
ment of the DoD-l compiler (Ada) and associated
tools to promote the development of the standard
military computer family. (pp. 453-459)

C.4 Documentation: Issues in the software development
process include the lack of completeness and
traceability of documentation for software from
the requirements to coding.

-4
B-26

B.14 Second U.S. Army Software Symposium, Williamsburg,
Virginia, sponsored by U.S. Army Computer Systems
Command via the Army Integrated Software Research
and Development Working Group (ISRAD), October 25,
1978. (S/W SYMPOS-78)

Funded by: ISRAD, USACSC, DARCOM

Objectives: To provide a forum for information inter-
change on software research and Development
for members of the ISRAD community. To
present recent developments in software
R&D programs, including those areas which
have received little or no emphasis in
current programs. To develop an ISRAD
community awareness and visibility to
these programs and to provide access to
the ISRAD R&D programs.

Methodology: The agenda was developed for the two day
symposium over a 14 month period by the
Symposium Organizing Committee of ISRAD.
The symposium was tailored to highlight
the DoD Software R&D Technology Plan
(September 1977) and included program
areas not in the Technology Plan, such
as security, human factors and graphics.
The Symposium was organized into 18
plenary and parallel technical sessions,
at which 48 papers were presented.

Structure: The proceedings of the two day symposium
includes a session summary and most of the
papers presented for each of the 18 sessions.
The proceedings include an executive summary
of findings of the symposium and a summary
of recommendations.

Problem Areas: A.1, B.2, C.2

Details of Problem Addressed

A.1 Requirements:

a. Security Issues - "The problem of
ensuring the security of software,
and the operational systems they support,

B-27

requires the development of secure
operating systems. In military systems
there is also a requirement for pro-
tection of classified information
and privacy data."

"Secure software systems must be
certified to verify the multi-level
security properties and to prove
the design is secure. The goal of
a security system is to provide
strong assurance that it is impos-
sible for and unprivileged user to
compromise protected information."
(pp. 107-146)

b. Lack of Inter-operability - Inter-
operability between systems requires
a clear statement of interface
requirements and understanding of
inter-operability concepts. Interface
design planning must be conducted on
a totally integrated structure
basis. Software inter-operability
considerations are involved in the
following: man-machine interfaces,
software versus firmware, software
inter-operability standards, operator
inter-operability training, provision
of adequate multi-level security for
joint ARMY/NATO inter-operability,
considerations for continuity of
operations and survivability of
Battlefield Automated Systems.
(pp. 379-389)

B.2 Tools: Software support tools in embedded
computer systems have been plagued with a
number of problems such as:

Non-reusability of existing tools
because current systems have unique
combinations of language and host
target processors.

B-28

U

Resource constraints such that a minimum
number of essential tools are developed
for each project. Tools are not the
focus during development (the embedded
system is), therefore a significant
lower level of quality results.

C.2 Software Metrics: The designer of embedded
computer systems has the option with today's
technology, to allocate logic functions
among the hardware, software and firmware
of a system. This design opportunity
introduces concerns which must be addressed
early in the system life cycle. Achieving
the most cost effective design will require
a thorough trade-off analysis of the tech-
nological, acquisition, operational and
support aspects of the system. (pp. 460-502)

B-29

B.15 Long Range Plan for Embedded Computer Systems Support,
TRW for AFLC/LO, October 1981. (PLAN ECS)

Funded by: AFLC/LOEC

Objectives: Develop a long range plan for improving
the AFLC embedded computer system support
posture for the 1980's.

Methodology: The study, accomplished by a task force of
TRW personnel, expanded on the framework
established in Phase II of the study which
had: 1) established the current baseline
of support for the five categories; 2)
assessed and forecast major technology
impacts and investigated selected support
issues. From this material, 12 support
objectives were developed and initiatives
developed to satisfy those objectives. From
those initiatives, the long range plan was
developed reflecting recommended implemen-
tation for both administrative and program-
matic initiatives.

Structure: Volume I--Executive Overview, Volume II--Long
Range Plan

Problem Areas: A.1, A.2, A.3, A.4, A.5, B.l, B.2, B.4,
C.3, C.4, D.l, D.2, D.3

Details of Problems Addressed

A.1 Requirements: Requirements baseline effects
test requirements; suggests ATD change funded
concurrently with weapon system change, pre-
emptive engineering problems; investigate and
maintenance on AISF specification tools; lays
out plan to provide adversary threat changes
within fire control elements.

A.2 Management: Recommends status accounting tools;
stresses system engineering aspects of ECS
support.

A.3. Acquisition: Recommendations associated with
funding issues; funding relationship with
other initiatives.

B-30

A.4 Product Assurance: Recommends IV&V as a
multi-purpose activity.

A.5 Transition: Recommendations relating to data
quality; IV&V as transition tool; emphasizes
problems associated with divided support
responsibilities.

B.l Disciplined Methods: Recommends architectures
and standards for multi-use ECS.

B.2 Tools: Analysis is labor intensive; automate
d-ocumentation and distribution tools; recom-
mends automation and standardization of ECS
support processes; recommends MIS.

B.4 Capital Investment: Addresses common ECS
support components; limit support system
proliferation; recommends ECS support networks.

C.3 Design Attributes: Stresses design for
testability; stresses modularity; proposes a
modular integrated support facility.

C.4 Documentation: Automate documentation; stan-
dardize CM; makes several recommendations
relative to configuration management.

D.1 Skills: Need exceeds supply while engineers
tasked with non-technical tasks; makes training
and professional education recommendations,
recommends skill centers.

D.2 Availability: Improve productivity to
compensate; suggests matrix organization;
several recommendations to improve personnel
acquisition and retention.

D.3 Incentives: Recommends ECS career progression.

B-31

B.16 Study of Civilian Engineer Recruitment, Retention
and Use Through-out The Joint Logistics Commands,
30 October 1981. (JLC-ENG)

Funded by: Joint Logistics Commanders

Objectives: The objectives of this study were to
develop solutions and recommendations
for assessing engineering manpower
needs, recruiting sufficient numbers
and quality of engineers, and encour-
aging maximum retention and optimum use.
The study was intended to prove or
refute the following perceptions.

o JLC Commands are experiencing recruiting

difficulties because federal salaries
are not competitive with industry.

o The recruiting programs and methods

need to be improved.

0 JLC Commands are experiencing a serious
retention problem at all grade levels
because of non-competitive salaries,
job dissatisfaction and lack of pro-
motion opportunities.

O Throughout the JLC Commands engineers
were not having full use made of their
professional engineering skills, know-
ledge and abilities.

Methodology: To gather the supportive data, the
study group reviewed appropriate liter-
ature, conducted interviews with college
placement and personnel management
officials, and administered an employee
questionaire to about 1,700 of the
37,980 JLC civilian engineers.

Structure: The report contains an executive overview
which summarizes the conclusions while
the main body of the report summarizes
JLC Commands demographics, occupations,
salaries and benefits, planning for re-

B-32

cruitment, recruitment, retention, use
of engineers, and supportive data.
The data are partially analyzed and
numerous recommendations are made.

Problem Areas: D.2, D.3

Details o-' Problems Addressed

D.2 Availability:

a. Engineering Shortage - "Currently, engineering
shortages exist in the computer sciences and
most engineering fields at all degree levels.
These shortages are expected to decline gradu-
ally until 1990, at which time the numbers of
new engineering baccalaureates should be ade-
quate to satisfy projected demand for their
services. Continued shortages in computer
sciences are expected to continue into the
1990s. However, easing of the engineering
shortage by 1990 is dependent on colleges and
universities having the capacity to educate
all students at both the undergraduate and
graduate levels who want to obtain degrees
and who are judged by those institutions to
be qualified to do so (i.e., secondary schools
have reduced educational standards and require-
ments, and have shortages of mathematics and
science teachers, thereby depriving college
entrants of the academic background necessary
for engineering degrees). Increasing enroll-
ments, falling levels of Ph.Ds, faculty
shortages and inadequate/obsolete laboratory
facilities and apparatus may restrict colleges
from training all qualified applicants. If
such restrictions occur, there may be fewer
engineers available in 1990 than the projec-
tions indicate, possibly resulting in con-
tinuing tight markets in most engineering
specialties and perhaps serious shortages in
some of them. Nationwide the 93,500 annual
engineering vacancies cannot be fully met by
graduating engineers, immigrant engineers and
graduates from related fields. A 16,500 annual
shortfall will remain until 1990." (pp. 23,4)

B-33

b. Recruitment - Current methods of recruitment
for "new degreed" engineers are summarized.
Discussions with college placement personnel
suggest improvements in federal advertising.
The most emphasized factor for new engineers
was the $3000 (for G-S-7), and $4000 to $6000
(for G-S-5) annuai starting salary disadvan-
tage the federal government has in relation
to industry. New graduates must perceive that
government compensations are "fair" and
comparable to industry.

Recruiting from all sources (both internal
and external to the government) and at all
levels of experience is recommended.
(pp. 25-30)

D.3 Incentives

a. Retention Rates - Statistics for 1979 show
16.7% of G-S-5 engineers and 14.2% of G-S-7
engineers are leaving JLC with the majority
leaving federal service. These engineers
cited a need for more meaningful and inter-
esting work, professional education and cross
training, and assignment of a mentor or
sponsor.

For all JLC engineers the loss rate for 1979
was only 7.6 % which implies that engineers
are not leaving at all grade levels. in the
same high proportion, a fact that was not
anticipated before the study. (pp. 7, 33, 36)

b. Use of Engineers - The report claims that
engineers are not fully used on engineering
activities, but the extent to which they are

.4 being used is clouded by conflicting data.
For example, from one element of the JLC
survey data the conclusion is drawn that
"more than 50% of the engineers spend 50%
or less of their time on engineering,"
whereas from other data in the same survey
more than 60% of the engineers indicated that
the engineering work they were expected to
do kept them occupied most or all of the
time. (pp. 43-49)

B-34

c. Conflicting Perceptions - "Perceptions of
the JLC engineers, as reflected in responses
to the questionnaire, indicated that many of
the factors which cause an employee to stay
with an employer exist in the JLC Commands.
A majority of the engineers perceived: (1)
their work is challenging; (2) they are
treated as professionals; (3) they are held
responsible for technical decisions, and
these decisions are supported by their
supervisors; (4) the risk they take in making
technical decisions is appropriate for the
potential consequences; (5) maintenance of
their technical skills is encouraged; and
(6) initiative and innovation in their work
are encouraged.

The engineers also perceived a negative side
to JLC employment: (1) many of the jobs they
are given do not provide them the opportunity
to work at or near their full potential as
an engineer or engineering manager; (2) they

are paid less than their counterparts in
private industry; (3) educational opportun-
ities and career progression are limited;
(4) the environment in which they work is
minimally creative; (5) the rules and manage-
ment systems at their installation are often
not conducive to engineering accomplishment;
and, (6) there are too few engineers in
their organization. These perceptions may
be damaging to JLC recruitment efforts. More
than half of the JLC engineers would advise
graduating engineers to seek jobs in the
private sector rather than the federal
government. This confusing picture must be
examined and a more accurage analysis made of
engineer's perceptions." (pp. 6,7)

B-35

i

B.17 Summary Report of Audit, Management of Embedded
Computer Systems, October 1980. (AUD/MGMT ECS)

Funded by: Air Force Audit Agency - OPR is HQ USAF/RD
(This is a paraphrased version of the audit
findings and management comments.)

Objectives: Review Air Force and MAJCOM guidance for
the acquistion of ECSs including require-
ments definition for hardware, software,
supporting documentation, and computer
capacity sizing. Acquistion policies
concerning the identification of ECS,
configuration management, and test
planning were also assessed.

Determine the implementation status of
the Air Force inventory or ECS hardware
and software including an assessment
of the Computer Program Identification
Number System.

Evaluate Air Force and MAJCOM procedures
for logistics support of ECSs to include
depot level support of hardware and soft-
ware, management of Federal Stock Group
70, and initial provisioning for ECS
hardware. Additionally, policies rela-
tive to the classification of embedded
computers and the operation of integrated
support facilities were reviewed.

Methodology: Audit work was accomplished at three
AFLC air logistics centers and two AFSC
buying divisions. The audit was
initiated in September 1979, an advance
notice of findings issued in February
1980, and a draft report issued in June
1980.

Structure: The summary report of audit consists of a
single volume. In addition, ten reports
addressing local audits supporting this
effort exist.

Problem Areas: A.1, A.3, A.5, B.1, C.1, C.3, C.4, D.2

B-36

Details of Problems Addressed

A.1 Requirements: Memory, timing and I/O channel
capacities were not adequately considered, docu-
mented or monitored during system acquisition.
Existing methods for estimating software size
and complexity are informal and illdefined.
(pp. 22-25)

Post Deployment Software Support concepts need
to be reassessed periodically to assure optimum
method is being used (organic, contract, combina-
tion). (pp. 41-44)

A.3 Acquisition: General purpose computers used in
AFLC Integration Support Facilities were acquired
and managed per 800 series directives versus
300 series directives. Concern over whether
this is proper interpretation of "gray zone"
between 300 and 800 directives. (pp. 17-21)

A.5 Transition: Inadequate policy for computer
program configuration items identification and
configuration management.

B.1 Disciplined Methods: Some software products
were not identified as computer program config-
uration items and their configuration properly
managed. (pp. 5-9)

C.1 Doesn't Meet The Need: Work stoppages at an Air
Logistics Center (ALC) occurred due to deficien-

cies in application software. In another case,
ineffective interface procedures resulted in test
software which did not address the multiple con-
figurations of hardware to be tested. Software
delivered to the ALC would not validate the ser-
viceability of any of the hardware items.
(pp. 6,34)

C.3 Design Attributes:

Security - Emanation of electronic signals
outside several support facilities were not
adequately evaluated. Physical security to
limit access to facilities needed attention.
(p. 19)

4
B-37

C.4 Documentation: Failure to identify some software
as computer program configuration items resulted
in the lack of documentation and engineering
data required to maintain the software. Depot
organic support capability was delayed one year
and may be delayed two additional years. (p. 6)

D.2 Availability: One integration support facility
experienced personnel turnover of 50%. Skills
needed in area of engineering and automatic
data processing equipment. (p. 42)

B-38

B.18 A Study of Embedded Computer Support Phase II,
TRW for 5ELC/LOEC, September 1980. (ECS-II)

Funded by: AFLC/LOEC

Objectives: The purpose of this study is to develop
a long range plan for use by HQ AFLC
to manage and maintain Embedded Computer
Systems on a command-wide basis in the
1980's.

o Establish a baseline for current ECS
support functions and requirements

o Assess and forecast major technology
impacts on future systems and their
attendant support requirements

o Investigate the potential use of
networking and the National Software
Works (NSW) and other support
concepts

Methodology: Volume II of the report was developed
by a working group within TRW. This
group, called the Operations and Support
Working Group, consisted primarily of
TRW field site managers and other
engineers and scientists collocated with
AFLC engineering divisions at various Air
Logistics Centers. This group wrote a
series of "white papers" on selected
topics which were identified and coordin-
ated as major problems and issues in the
support of ECS. Volumes III through
VII, and Volume IX were developed by
principal investigators assigned to
particular ECS dategory or to the
national software works investigation.
Volume VIII was accomplished by forming
a Technology Working Group of senior
engineers and scientists with expertise
in the technology areas pertinent to the
AFLC ECS support role. Editorial con-
ferences were held within groups. The
study lasted from September 1979 to
September 1980.

B-39

Structure: Volume I -- Executive Overview; Volume
II -- Selected ECS Support Issues;
Volume III-VII -- Requirements Baselines;
Volume VIII -- ECS Technology Forecasts;
Volume IX -- National Software Works
Investigation.

Problem Areas: A.1, A92, A.3, A.4, A.5, B.4, C.3,
C.4, D., D.2, D.3

Details of Problem Adressed

A.1 Requirements: Problems with concurrency and
fidelity of Air Crew training devices; discusses
problems and a suggested approach to meet adversary
threat changes within ECS for fire control elements.
Complexity and programmatic issues associated with
requirements.

A.2 Management: Discusses the system aspects of ECS
software and the changing role of support agencies
with respect to ECS support.

A.3 Acquisition: Addresses the problems of funding,
but primarily in the support area; split-funding
for modifications and firmware funding; ADPE
versus ECS computer acquisition.

A.4 Product Assurance: Proposes IV&V as a transition
tool, as training element, to provide support
tools, and identify errors in products and data.

A.5 Transition: Problems with quality of data and
product at transition; proposes IV&V by the
support agency as a transition tool; lack of
guidance in support area.

B.4 Capital Investment: Discusses need for com-
monality/modularity in facilities, tools, and
training devices, discusses VHSIC, fault-tolerant
hardware, multiprocessor architectures, variable
task systems, and their implications.

C.3 Design Attributes: Discusses the lack of and
the need for design for testability in both
hardware and hardware from an ATE perspective.

B-40

C.4 Documentation: Errors/inconsistencies in documen-
tation; proposes standardized data item descrip-
tions; proposes IV&V by support agency as partial
solution.

D.1 Skills: Discusses management training needs;
lack of and deferred training funds.

D.2 Availability: Shortage of skills; lack or deferred
training; recruiting problems, retention problems,
manpower requirements baselines.

D.3 Incentives: Discusses attrition problem and some
of the causes; lack of adequate career progression.

B-41

B.19 Final Report of the Software Acquisition and
Development Working Group, July 1980.(SADWG)

Funded by: Assistant Secretary of Defense for
Communication, Command, Control and
Intelligence.

Objective: "(Determine) the efficiency and cost
effectiveness of current software acqui-
sition and development practices within
the Intelligence Community, and
(ascertain) areas which could benefit
from better management control."

Methodology: A working group of nine people represen-
ting OSD, DIA, NSA, CIA, Intelligence
Community Staff, USA, USN, USAF, and
Rome Air Development Center accomplished
this investigation from February 1979 -
July 1980. Inputs came from: 1. In-
depth experi nces of working group
members in C3I software acquisition and
development. 2. Invited presentations
from 20 software development corporations
doing business with the Intelligence
Community. 3. Studying actual case
histories of four software development
projects.

Structure: A single report with three sections
(Intro, Industry Comments, Case Histories)
and three appendices (Summary of Industry
Comments, List of Software Development
Commandments, Measureable Milestones).

Problem Areas: A.1, A.2, A.3, B.2, C.2, C.3, C.4, D.2

Details of Problems Addressed

A.1 Requirements: "Projects, and subsequently contracts
often get started with inadequate planning. Also,
because of ambiguous or vague requirements, there

4d is often a lack of understanding between the govern-
ment and contractor as to what is to be delivered."
(pp. 1-4)

B

I

'o

A.2 Management: "Software development projects are being
conducted with a lack of good management practices
(i.e., poorly trained managers, inadequate record
keeping, insufficient management tools, and
misdirection of emphasis at the various develop-
ment stages)." (pp. 1-4)

A.3 Acquisition: "There is often a mismatch between
the contract type and the complexity of the
work to be performed." (pp. 1-4) C I systems
are unique and affected by a unique set of
acquisition and development problems. Factors
are:

o Generally one of a kind

o Software dominant

"Finished requirements do not exist with
military software systems because require-
ments are constantly changing and the
systems, as a result, are never complete."

o "C3, systems generally have a development

cycle of more than five years before
becoming operational." (pp. 1-6)

B.2 Tools: "Everyone agrees that software develop-
ment productivity must be increased on the part
of both the government. and contractors. One
method of increasing productivity is through
the use of available productivity tools. How-
ever, because productivity tools are not well
understood and difficult to use, instead of
enforcing their use, the government only pays
them lip service. At present, there is no easy
method to quantify the value of productivity
tools. Such a method needs to be developed."
(pp. 1-6)

C.2 Software Metrics: "Because the government must
estimate system costs often years in advance of
the actual procurement, the estimates are usually
wrong. And because contractors must bid on sys-
tems before they are designed, their estimates
are also usually incorrect. Neither the govern-
ment not contractors have adequate means to esti-
mate lifecycle costs with any reasonable degree of

B-43

accuracy. The current state-of-the-art in
life cycle cost estimating is grossly inadequate."
(pp. 1-5, 1-6)

C.3 Design Attributes: "The government inadvertantly
impacts costs and schedules by specifying hardware
for a particular development before knowing wheth-
er the hardware will meet thg processing and
performance requirements of the proposed system.
It has been shown to be very expensive to "shoe-
horn" software into minimally acceptable hardware
configurations, particularly since hardware is
less expensive than software." (pp. 1-4) "Soft-
ware development is unique. The software industry
is the only industry required to build usable
products right the first time without benefit of
intermediate development stages such as prototyping.
Although prototyping is an accepted practice in
other less complex industries, it is not in soft-
ware development. Without prototyping or some
sort of intermediate development stage, risk
factors are significantly increased." (pp. 1-5)

C.4 Documentation: "There are a multiplicity of
(documentation) standards within the government
which cause inefficiency and confusion. Currently,
standards are not precise enough to eliminate
misunderstanding between contractors and the
government. The level of detail is often open
to interpretation." (pp. 1-4)

D.2 Availability: "Security requirements impact soft-
ware development costs because work cannot begin
on a project until the required personnel have
been cleared by the agency for whom the work is
to be performed. There are built-in delays
because interagency transfers of security billets
take an inordinate amount of time, and there
are no interagency agreements on standards for
the investigation or authorization of security
clearances. This impact is rarely considered
by the government and contractors in estimating
costs and schedules. These costs are difficult
to estimate because delays for clearances depend
on the individual consideration and the agencies
involved." (pp. 1-5)

B-44

K. j-

B.20 Predictive Software Cost Model Study, Volumes I-II,
6/80. (S/W Cost Model)

Funded by: Air Force Wright Aeronautical Laboratories

Objectives: Determine feasibility of software support
cost model

Methodology: Review literature, site visits to ALCs

Structure: Detailed Report (2 volumes)

Problem Areas: C.2

Details of Problems Addressed

C.2 Software Metrics:

a. Data Collection - Data collection on
software support does not, in general,
go to the breadth and depth desirable
to support a good, solid model of devel-
opment effort. (p.55)

b. Data Lack - A lack of definitive histori-
cal data on software operation and sup-
port and an insufficient understanding
of driving factors has hampered support
cost estimating and assessment of its
contribution to life cycle costs. Bases
on which models are built are extremely
limited. (p. 133)

B-45

B.21 Software Requirements for Embedded Computers,
A Preliminary Report, 3/80. (S/W REQ-EC)

Funded by: USAF to Rand Corporation

Objectives: Focus on early acquisition problems
regarding software

Methodology: Interviews with program personnel

Structure: Preliminary Report

Problems areas: A.1, A.2, A.3, A.5, C.4, D.1

Details of Problems Addressed

A.1 Requirements: A major issue has been the
frequent afilure of the first products of
software development efforts to meet the
user's operational needs. One of the most
consistent study results has been the iden-
tification of software requirements manage-
ment as a major problem area. The term
"requirement" has yet to be satisfactorily
defined; it means different things to dif-
ferent people. (p.1)

a. Requirements Management - The most fre-
quently cited requirements problem is the
need to respond to late - appearing changes
in the requirements baseline. One of the
primary tasks of program management is to
ensure that such changes are accurately
reflected in the requirements the con-
tractor must satisfy. Requirements manage-
ment is at the heart of and inextercably
tied to the entire software development
process. A false assumption is that the
software development process can easily
accommodate change. (p. 2)

b. System Level Requirements - Recent software
requirements research has not focused on
the early activities leading to system -
level requirements which may already con-
strain software design flexibility by

B-46

4i

specifying architectures. Software, despite
its mission - critical nature, is not rou-
tinely treated as a major decision variable
from the earliest stages of the acquisition
process. Many software decisions are still
made indirectly. (p.3)

A.2 Management:

a. Software Subcontracting - For two command
and control systems studied the software
subcontractor did not have an overall
product orientation. The software package
is often developed by a subcontractor who
has little knowledge or experience in the
overall application area. With associate
contractors none may have total product
orientation or much experience with develop-
ing pieces of command and control systems
let alone complete systems.

b. Management Approach - Project to project
differences in overall understanding of
tasks, perception of a coherent product by
the contractor, contractor experience and
concreteness of requirements suggest a
need for correspondingly different manage-
ment approaches.

A.3 Acquisition:

a. Source Selection - Contractor's past
experience or demonstrated capability in
computer or software technology was nct
a significant factor in the source selec-
tion process. (p. 9)

b. Contractor Pre-RFP Effort - Contractor
studies prior to the release of the RFP
often lock-in the contractor's direction
on the software before the Air Force has
addressed the software issues informally
or formally. (pp. 10,11,15)

B-47

A.5 Transition:

a. Effects of Change - In responses to new
or changed requirements, developers tend
to leave early decisions intact, fearing
the impact of changes on budget and schedule.
Instead the changes are made at lower levels,
usually by complicating the software. (p. 16)

b. Advanced Technology - Proposal writing teams
are usually made up of the contractor's
advanced technology personnel, who are
biased toward the most advanced technology
feasible in system design. This has led
to trouble where those responsible for the
software don't share the optimism of being
able to implement the technology. Often
little weight is given to practical issues
in preparing the advance technology aspects
of the RFP. Where Phase 0 contracts are
awarded, this is less of a problem. (p. 21)

C.4 Documentation: The producers and SPO reviewers
of software documentation do not know enough
about the specific information needs of the
intended audiences - e.g., mission support,
training. The Air Force is paying more for
documentation (in direct and indirect costs)
than is warranted by its ultimate utility.
Minimum essential information for each group
of users should be determined and standards
established. (p. 19)

D.1 Skills:

a. Flexibility, - Often software is assumed
to be infinitely flexible; however, basic
hardware/software trade off issues may be
decided in the absence of software exper-
tise. One effect is a reduction of the
design and implementation flexibility
available during full-scale development.
(p. 4)

B-48

b. Skill Shortage - Long standing resource
problems, the "start from scratch" charac-
ter of most program offices, the limited
transfer of experience from one program
to another are all major impediments to
lasting improvements to software acquisi-
tion managetent. The primary resource
problem is attracting, training, and keep-
ing talented people. Software problems
on a number of large programs have been
quickly and effectively turned around by
the efforts of single individuals. What
are the characteristics of such people
and how can their skills be accessed?
(pp. 17,18)

c. Software Acquisition Expertise - The "kind"
of software expertise is as important as
the "number" of people required. Air Force
programs are not producing the most needed
kinds of expertise. Such people need a
background in computer science and the
engineering applicaiton such as radars,
etc. (p. 19)

B-49

B.22 Computer Software Contract Administration, 2/80.

(S/W ADMIN)

Funded by: USAF/HQ Contract Management Division

Objectives: Establish Software Needs of CMD Personnel

Methodology: In-House Study and Workshop

Structure: Coordinated Study Report

Problem Areas: A.2, A.4, A.5, D.1

Details of Problems Addressed

A.2 Management:

a. AFR 300 and 800 Series Policies - A
dichotomy exists in the organizational
structure and policies at HQ AFCMD
relative to AFR 300 and 800 series
regulations. (pp. 3-4)

b. Automated Management Techniques - Veri-
fication and validation of these (contractor)
management systems through the usual CMSEP
(Contractor's Management System Evaluation
Program) approach will take a new meaning.
(pp. 3-4)

A.4 Product Assurance:

Software Reliability - Software reliability is
ill-defined. Work needed to be done for proper
inclusion in policy. (pp. 4-14)

A.5 Transition:

Firmware Management - Guidance needed in fol-
lowing areas: content and structure of de-
liverable documentation; subcontracting provi-
sions; data rights; effects on logistic
support capabilities. Firmware management
disciplines should be tailorable. (pp. 3-9)

B-50

I

..

D.1 Skills: Must define necessary skills for
management and technical personnel. Feasi-
bility of standard position descriptions for
engineering and quality assurance personnel
(for ECRs). (pp. 4-16)

Embedded Computer Resource Training - Present-
ly no AFCMD training program exists which
identifies the responsibilities of the func-
tional divisions. The need is obvious. Com-
prehensive training course with short term and
long term objectives is required. (pp. 2-15)

'.
4

B-51

1

B.23 Final Report of the Joint Logistice Commanders
Software Workshop, 10/79. (S/W WORK-79)

Funded by: Joint Logistics Commanders

Objectives: A plan for implementing joint policy
recommendation

Methodology: Workshop panels - industry and government

Structure: Report

Problem Areas: A.2, A.3, B.2, C.2, C.4

Details of Problems Addressed

A.2 Management:

Management Discipline - Project managers have
no measures of progress or assurance that the
software will perform at an acceptable level.
(pp. 2-5)

A.3 Acquisition:

General Policy - No general policy for common
acquisition framework for joint services.
(pp. 1-2)

B.2 Tools: All services appear deficient in the
procurement of the necessary tools and documen-
tation. (pp. 1-2)

C.2 Software Metrics:

a. Quality Assurance - Difficulties in QA are
the lack of well-defined, consistent re-
quirements, differences in SQA approaches,
and inavailability of experienced personnel.
(pp. 2-4)

b. Acceptance Criteria - There is a lack of
recognized acceptance criteria, a lack of
DoD standardization, and a lack of histor-
ical data on which to base acceptance cri-
teria and procedures. (pp. 2-5)

B-52

c. Error Data - The paucity of software error
data for joint service programs makes it
impossible to develop an accurate error
model to help predict software reliability.
(pp. 2-5)

C.4 Documentation: There are a number of diverse
standards related to software documentation
within the services. There is no defined
methodology for establishing minimum documen-
tation requirements. (pp. 2-3)

a. Standards - Partial and inadequate standards
coupled with a lack of standardization of
Data Item Descriptions lead to delivered
software products which are often unsatis-
factory. (p. 2)

b. Terminology - Terminology and definitions
vary among the services even though the
subject matter is identical. (pp. 2-3)

B

B-53

B.24 Proceedings of the Joint Logistics Commanders Joint
Policy Coordinating Group on Computer Resource Management,
8/79. (MGMT-79)

Funded by: Joint Logistics Commanders

Objectives: Establish triservice common software policy

Methodology: Triservice and industry working groups

Structure: Unofficial Report

Problem Areas: A.3, A.4, A.5, B.2, C.3, C.4

Details of Problems Addressed

A.3 Acquisition:

a. Systems Level Issues - The general assess-
ment was that system level issues in the
final analysis may have a greater impact
on software success than the software
acquisition issue. (p. 15)

b. Triservice S/W Acquisition Policy - Such
a policy is essential. (p. 16)

c. Weapon System Acquisition Policy - Deemed
inadequate regarding the embedded software
elements part of a larger system. (p. 17)

d. Post Deployment Support - Lhould be address-

ed early in acquisition prior to FSED. (p. 17)

A.4 Product Assurance:

* a. Operational Test - Extremely difficult
to test ECS in close to real environment,
hence many systems reach deployment with-
out true operational effectiveness being
measured. (p. 16)

* b. IV& V - No agreed upon definition or
how it is to be contracted. (p. 16)

B-54

c. Quality Assurance - The need and degree
of quality assurance for software on the
DoD policy level is described. In addi-
tion to policy a guidebook and handbook
are required. (pp. 127-139)

d. Software Acceptance - The problem is stated
as "the acquisition program manager often
has noassurance that computer software,
if accepted, will perform operationally
at an acceptable level." The needs for
acceptance criteria and a guidebook are
expressed. (p. 161)

A.5 Transition:

a. Firmware - More rigor, especially during
test, should be employed because of the
inflexibility of the medium and multicopy
production. (p. 15)

b. Microprocessor/Microcomputers - Very
deeply embedded micros precludes individual
test and qualification. (p. 15)

B.2 Tools

PASCAL - PASCAL is becoming de facto industry
standard and not in DODI 5000. 31.

C.3 Design Attributes:

Preliminary Design - Better statement needed
of level of detail at PDR for CPCIs and
corresponding documentation. (p. 17)

C.4 Documentation: There are diverse sets of
documents and documentation requirements.
A single set (subsetable) should be defined.
(pp. 93-97)

B-55

B.25 Computer Technology Forecast and Weapon System

Impact Study, Vol. I, kI, III, 12/78. (COMTEC-2000)

Funded by: USAF

Objectives: Project future computer resource technology
applications

Methodology: Conference and panels briefed by experts

Structure: Application oriented reports (Approved)

Problem Areas: A.1, A.2, A.4, A.5, B.2, C.3, D.l, D.2

Details of Problems Addressed

A.1 Requirements:

Complexity - For aeronautical systems soft-
ware, implementation of future functions will
become increasingly complex and more expen-
sive to engineer. (pp. 2-6)

A.2 Management:

Standardization - Standardization will have
to occur so as not to isolate DOD from
commercial market technology advances.
Computer architecture standardization has
the potential of divorcing DOD from commer-
cial support software and mass produced
microcomputers. (pp. 203)

A.4 Product Assurance:

Testing - Dynamic testing is not adequate
to produce the degree of reliability re-
quired in many systems. As systems
become more complex, the inadequacy will
become more apparent. (pp. 2-3)

A.5 Transition:

Rapid Reprogramming - For aircraft sensors
a rapid reprogramming requirement exists
based on threat, tactical, and doctrinal
changes. (pp. 5-44)

'5

B-56

B.2 Tools:

a. Support Software Sharing - Current system
applications are constrained by the lack
of a viable networking system to enable
support, operational, and development
commands to share support software.
(pp. 2-6)

b. Test Tools - Software test tools have
not been combined to produce an effective
programming environment. (pp. 4-39)

c. Resource Estimation - Resource estimation
is needed in the development and support
of software systems. These include man-
power, schedule, sizing, timing, complexity,
and cost. Data collection is necessary.
(pp. 5-79)

C.3 Design:

a. Design Techniques - For Aircraft/Weapon
interfaces design techniques are needed
that will allow mapping from system
requirements to an effective flexible system
design. (pp. 2-5)

b. Advanced Sensor - In software, the develop-
ment of appropriate near-real-time algori-
thms and data representations for sensor
processing is likely to be both a major
schedule and cost factor. (pp. 2-6)

c. Distributed Processing Needs - The entire
area of distributed processing needs to be
better defined and better understood.
Included are needs for system level tech-
nology, modeling, security, distributed data
bases, fault tolerance, design methods, and
analysis methods. (Vol, III, pp. 1-19)

d. Distributed Systems - Tools for accomplish-
ing hardware/software/firmware trade-offs
of distributed systems are not yet adequate.
Limitations in the efficient use of distri-
buted systems will arise from software con-
straints. Adequate analysis tools, methods

B-57

L

of problem partitioning, and techniques
for controlling software/hardware modules
are needed. Modelling and development
tools do not exist. (pp. 4-29)

e. Distributed Executives - Distributed systems
make clear the need for distributed executives.
(pp. 5-37)

D.1 Skills:

Software Engineering - Software engineering
is not a science and there are few accepted
methodologies and tools available to support
the necessary engineering functions. The
process is labor intensive. (pp. 5-78)

D.2 Availability:

a. Product4ivity - Present (software engineer-
ing) productivity is too low and growing
too 31owly to keep pace with rapidly
growing hardware capabilities. The demand
for software personnel will exceed the
supply by 30% by 1985. (pp. 4-41)

b. Labor Intensive - Software is extremely
labor intensive; as a result software is
rapidly becoming the limiting factor in
large systems. (pp. 4-41)

c. Personnel Shortfalls - This panel report
focuses on existing shortfalls in 511XX
and projected shortfall in 51XX career
field skill areas. Civilian personnel
are also short in numbers. Future needs
are projected to be far more serious.
Personnel limit the capability of computer
systems. The power and flexibility of
computer systems cannot be utilized without
the proper numbers and skills of software
specialists. Since computer systems form
an integral part of today'., management and
weapon systems, software personnel short-
falls will keep the Air Force from ful-
filling its operational mission. (Vol. III,
pp. 1-5)

B-58

B.26 Operational Software Management and Development for
U.S. Air Force Computer Systems, 1977. (OPER S/W M&D)

U "Funded by: Air Force Studies Board

Objectives: Improve effectiveness in operational software

Methodology: Summer Study

Structure: Final Report

Problem Areas: A.2, A.3, A.5, B.2, C.3, D.1, D.3

Details of Problems Addressed

A.2 Management:

Management Discipline - Software is not identicalto hardware except in the need for dl- ipline.

Lack of a sure way to assess progress furthers
the problem. Each project has unique problems
and challenges requiring a unique set of specific
management techniques. (p. 20)

A.3 Acquisition:

a. Requirements - Contributing to high risk
in cost and schedule is the general in-
completeness of the requirements - particu-
larly regarding anomalous and extreme con-
ditions, interfaces with other systems,
and collateral functions. Realism in
requirements is also a problem. It may
be difficult to resolve problems of
realism early. Life cycle aspects and
total systems aspects must bear on soft-
ware requirements. (pp. 15-19)

b. Procurement - Since the development con-
tract is generally consumated before system
development is sufficiently understood, it
follows that lowest price as a criterion for
contr. -t award will get too little effort,
an improperly short schedule, inadequate
staffing, and possibly insufficient facili-
ties. Changes of scope can be used to make
up deficiencies, but a job which starts off

B-59

I

badly has little chance of becoming right
through the change of scope process. Espe-
cially with a fixed price bid, this is a
delicate problem. The Air Force lacks good
ways of rejecting underbids.

Furthermore, "one shot" or "turn key"
developments imply poor life cycle costs,
poor performance, unresponsiveness to
changing requirements and a hardware first,
software catch up philosophy. (p. 22)

A.5 Transition:

User Maintainer Participation - Low or non-par-
ticipation of user/maintainer organizations
hampers accurate requirements definition imply-
ing poor transition coordination and poor prepa-
ration for post delivery. (p. 21)

B.2 Tools: Problems cited with tools include prolifera-
tilon of different tools for similar purposes, a
question of who and how should tools be funded,
and issues of transportability and reusability
including diversity of development computer types,
contractors' own tools, and GFE risks. (p. 59)

C.3 Design Attributes: Hardware decisions are generally
made before software development begins, and the
software (because it is so "flexible") is left to
fix any problems. "Flexibility" also means com-
plexity, development difficulty, and use/maintenance
problems. Trying to fit a job into an under-sized
and under-powered computer is a sure way to high
cost and risk of failure. (p. 19)

D.1 Skills: Lack of strong systems engineering capa-
bility leads to inflexible emphasis on cost,
schedule, component items, and policy at the risk
of the total system. The tour of duty (particular-
ly of junior officers familiar with system details)
is not job related. Software management expertise
is not widely available. Courses are needed and
case history information is lacking. A major need
is in mature knowledge of how computers and systems
work from a systems engineering context. (pp. 20-21,
65)

B-60

D.3 Incentives:

1-" Career Concept - Career path dnd career concept
in software engineering is not clear. Management
requires technical understanding but more from a
systems engineering sense than in a how-to-program
sense. (pp. 67-68)

B-61

APPENDIX C

Case Studies

INTRODUCTION

Appendix C contains case studies of actual problems en-
countered in developing and supporting software for weapon
systems. The problems are described within the context of the
weapon system, and the problem and its data are used to derive
a conclusion. Where possible, actual numbers are used to give
an idea of the scale of the problem. Appendix C should be read
as examples of the real-life problems of software development
and not as indictments of the projects described.

TITLE PAGE

C.l Fleet Combat Direction Software Support C-2
Activity (FCDSSA) Resource Shortage

C.2 Opportunities in Reusable Software C-7
Components as Exemplified by the Navy
Command and Control System (NCCS)

C.3 The Interrelation of Software and System C-ll

Problems

C.4 Artillery Fire Direction System C-14

C.5 Tactical Message Switching Systems C-16

* C.6 USAF F/FB-lll Post Deployment Software C-23
Support

C-1

C.1 Fleet Combat Direction Software Support Activity
(FCDSSA) Resource Shortage

An in-depth functional analysis of the FCDSSASD
(Fleet Combat Direction Software Support Activity in
San Diego) was performed as part of the SEATECS (Soft-
ware Engineering Automation for Tactical Embedded Com-
puter Systems) program managed by the Naval Ocean Sys-
tems Center (NOSC). This functional analysis shows
some of the problems and dynamics faced by Navy software
production groups today. The following observations
are derived from the final report which was prepared by
Systems Consultants, Inc., October 15, 1980.

The report projects serious shortfall in program-
mers and computer support resources in the next decade
when planned budgets are compared to projected workload.
The problems addressed relate to taxonomy areas B.4
(inadequate capital for the process and restricted host
facilities) and D.2 (shortage of competent developers).

C.1.1 Backyround: The functional analysis of the FCDSSASD
was initiated because of NAVSEA concern about the ade-
quacy of the FCDSSASD resources, existing and planned,
to meet future mission requirements. FCDSSASD along
with a similar organization in Dam Neck, Virginia
(FCDSSADN) provide in-service support for the Navy
Tactical Data System (NTDS) and other embedded systems
aboard surface ships. In 1980, FCDSSASD was supporting
multiple systems totalling more than 1.5 million lines
of source code. By 1990, the supported code is projected
to double. The O&MN (Operations & Maintenance Navy)
funds allocated to the command for software maintenance
is projected at a constant level (adjusted for inflation)
despite the projected growth in workload.

In addition, FCDSSASD has a fixed allocation of
space suitable for equipment installation. This alloca-
tion reached saturation when a third host support system
was installed in 1979. With the projected increase in
demand on FCDSSASD, the requirement for support equip-
ment and the corresponding space is expected to increase.

C-2

The military billets and civil service ceilings
allocated to FCDSSASD are projected at current levels.
The estimated workload increase might be accommodated
by expanding the contractor workforce. This will be
difficult given the current and worsening shortage of
area of embedded computer system development and mainte-
nance. In addition, the increased workload will seriously
stress the ability of FCDSSASD personnel to perform oper-
ational and technical tasking, as an increasing proportion
of the staff will be required in management and support
functions.

C.1.2 Analysis: Figure C.1-1 shows the labor resources
required to meet the projected workload compared to the
available resource. By 1985, critical resource short-
falls will occur. By 1990, the shortfalls will be cata-
strophic, in that over 600 additional people over that
available to meet the workload demand will be required.
These projections are based on a conservative estimate
of FCDSSASD workload and industry studies which predict
a 5% annual growth rate in the population of data pro-
cessing professionals through 1990.

Figure C.1-2 shows the projected ADP equipment
resource requirements against availability. Without sig-
nificant capital investment in ADP equipment for system
test support and software development support, no amount
of labor resource will be able to meet the projected work-
load. By 1990, the estimated annual shortfall in the test
facilities "mnck-up" hours will be over 190,000 hours.

C.1.3 Impact: The FCDSSASD analysis is one example of a
major problem facing DoD in mission-critical software.
Accelerating growth in the workload will soon overwhelm
the production resources and thereby threaten the DoD
mission, for software is critical to most modern weapon
systems. Given the problem, three courses of action
are available:

Reduce the workload - this is not feasible
unless our adversaries cease the introduction
of new threats.

C-3

CIVIL SERVICE RESOURCES

Requirement 0
Available

CONTRACTOR RESOURCES
m 1000

Requirement 0

Available

800

600

cc

, 400

z

200

1980 1985 1990

Figure C.1-1 Labor Resources

C-4

PROGRAMING &
GENERAL SUPPORT

Required

Available (Max)

Available (Prime Shift)

300

SYSTEM TEST SUPPORT
us0

Required
Available (Max)

* 240
C

(n

0
CL 180
0-

0

Cn 120

C.,

60

1980 1685 1 9bo

Figure C.1-2 ADP Equipment Resources

C-5

Increase the resources - this is not feasible

given the shortage of qualified software profes-
sionals. Even if ample resources were available,
the cost associated with the increases would
overburden the budget.

Increase productivity - this is a possible solu-
tion, but it will involve significant capital
investment and it will take several years before
any results are evident.

If no positive action is taken, a likely scenario
is that timely introduction of new weapon systems and
enhancements will gradually deteriorate with a corre-
sponding decrease in reliability as corners are cut.
The end result will be inferior DoD military capability
and failure-prone systems.

C-6

C.2 Opportunities in Reusable Software Components as Exem-
plified by the Navy Command and Control System (NCCS)

A common problem in software development today is
the inability to make use of functionally similar soft-
ware developed for other systems (see taxonomy area
B.3, Reinvention). The reasons for this are: 1) it is
difficult to determine if functionally similar software
exists; 2) the large majority of software is not designed
with reuse in mind; 3) to be reusable, software must be
designed and developed according to uniform and rigorous
software engineering practices; and 4) high-level policy
direction mandating reusability is missing.

The Navy Command and Control System (NCCS) Ashore
is an example of the opportunity in reusable software.
It consists of four major computer systems, each devel-
oped independently from the mid 60's to the mid 70's.
The following discussion and analysis is not to imply
that reusable software should have been used, for the
state-of-the-art at the time of development would not
allow this, however, the opportunity cost shown is real
and represents but one small piece of the opportunity
cost in reusable software.

C.2.1 Background: NCCS Ashore consists of four computer
systems developed for unique and independent use origi-
nally, but iategrated into a command and control communi-
cations network to form NCCS around 1975. Although
independently developed at different times, each of
the system's software exhibits a high degree of common
function as described below:

o Communications Processing: All four systems
have a common communications processing function
responsible for terminating the various Navy and
DoD communications lines and handling their pro-
tocols. Individual line handlers are embedded in
an overall communications architecture and each
is present at those nodes where they are required.

4 Message Processing: As with communications process-
ing, message processing is a common function. The
function provides parsing and error processing as
well as reformatting and buffering between the inner
system and the communications processing function.

C-7

o Ocean Surveillance, Blue Force Tracking, Status
of Forces Data Base Maintenance: All these func-
tional areas, where required at individual nodes,
are performed by similar software.

Command Support: The area of command support
entails reporting, command and analysis displays,
analysis activities, data base queries, etc.
This area is probably the most variable of the
functional areas, yet substantial commonality
exists in the display, report formatting, and
analysis support areas.

Each of the four systems is supported independently.
Since the size of the software subsystem in each system
ranges from 100,000 lines of source code to over
1,000,000 lines of source code, the opportunity cost in
redundant support of functionally common elements is
potentially very large. Whether or not it would make
sense to attempt to capitalize on this opportunity at
this point is unclear due to the significant redevelop-
ment cost that would be entailed.

C.2.2 Analysis: An estimate was made of the percentage of
each of the four software systems that represents
unique function. The remainder represents common func-
tion. This was then compared to the support budgets
since 1976 to estimate the opportunity cost (potential
savings) if common software components, supported by
a central group, had been used from that time. Figure
C.2-1 shows the result of this analysis. Since 1976,
approximately $34 million has been spent on support
(maintenance) and enhancements of the four NCCS
Ashore software systems. If we assume that cost is
equally distributed over all functions, then approxi-
mately $16.6 million went to unique function software
and $17.4 million to common function software.

If the common function software had been implemented
in common software components such that a single support
group could maintain and enhance it, it is estimated
that $10 million of the $17.4 million dollars is repre-
sentative of the potential cost savings. The original
opportunity cost related to reusable software is larger
than this because there would be a saving in the original
development.

C-8

.0 0% co %Do 0% CN qw co

0 + LA LA (N "r -4 (N4 M' Ln 0 a

0 -4 0- >0
Z N c4 c4 (N r4 m '00

+ .404 .

413

rza + z a
Ix c co en P-4 co (N -1 V 0C

04 L f % 0% (Ni U) L 0% lw -4 H- 1
0 + ON co LA 0 LAm 0 0E-
E-4 u 10 0 0 * 4 -

CZ (VI M ' LAU LA LA LA - 0
'-4$ +-' u

- I- 4

U441

-4 co lw en4.
(%. r. %D %D ' 'V0 0m

ON .0 1-4 -I -9 r-4 1-4 0 r--4 0 1r- 0 0

-- 4 1-4 r- 4 4 -4 -40

z 0
4' -i LA r-. (V 54 (D

U2 ' ~ c (0 w4
E11 C1 ((N (Nj C14 '-f Um 10 t

(a 0 * * M *ZI >1
E- (N C4 (N (N C4 (N (N L C4 .(N z c C

-4 = 0 4. cc0

rz2 0 c
00% 00 %D0 LA (n 0h LA 0VC *-4

Of r. IV Im LA 0% ON (N z
0% . -i V-4 r-, 0 r-4 40 Q P-4 0%

1-4 >* or .i
u 0 (N

* ~~~ E4 4'4 4I

oc ' 4 O '0 r- T2 0 a)C cc>
E- Ch a% (N F-I .-4f LA -4 E- u (a0 14J

(a 1 0 LA q (n LA mn LA '.0 Z) r-4 (

r4 ~ <6 co1 to 41

X__ W C rC 10

*0 -r- r- r- Um 0 a)2
rn .q0 enI ('1 z' r'.' ' (1"4C c a)

Z * * * * 44--I LA

I *-4 >4
4'4 cN .C044 w1

E- N (N (N LA LA ULA LA w. 3: 0- 0. w.
-~ E- * * * * * *U0. 0410a

10 0 44 -4 4 -4 - 4 4 (a1 (D
Cx - 0)O .1-1 >1

00 4 -

4' C)1 N.0 04

0 -4 E-4 4J 12 4a C
-4~~. 00n4)) C

441 04~ : 12
04Vr -4

'.0 i(Mc 0 -4 C14 10s0 :3) =.
C- r- r- r- cc cc cc Mz~ t110 E-4

W % a% (A ON ON ON 0% E-
>4 -1- - 4 1-4 -4 1-4 0 4' 4 4

E-4'

C-9

C.2.3 Impact: The obvious impact of the prevalence of rein-
vention is high cost of software. It is reasonable
to assume (based on the NCCS example and the ones out-
lined in the Notes below) that the opportunity cost
of reusable software components in DOD is in the hun-
dreds of millions of dollars. This cost in itself is
reason enough to vigorously pursue reusable software
components, but there is another perhaps more important
reason. The shortage of qualified personnel tied to
the increased use of software in weapons systems is
creating a situation where development is being squeezed
by the support of existing systems. The introduction
of reusable components can significantly relieve the
resource demands thus assuring continued responsiveness
to new threats through the introduction of new or
enhanced weapon systems.

Note 1: Some would argue that DoD systems are much
too complex or unique to benefit from reusable soft-
ware. But even a short study of DoD software will
reveal abundant opportunities for reusable components.
The number of real-time executives, file management
subsystems, display software, report generators,
navigation routines, etc., that have been developed
independently but which represent very similar func-
tional capability is large. Some of the most complex
software systems developed by DoD are simulation/
stimulation systems used for test and training. The
redundant software in these systems alone measures
in the tens of millions of dollars.

Note 2: Tha Navy has begun a program based on reus-
able components called Restructured NTDS. It is
estimated that over the period 1986 to 1990, $20
million could be saved on trouble reports and small
engineering change proposals to NTDS if this archi-
tecture were used for DD-963, CGN-38 and CG-26
class platforms alone.

Note 3: The current procurement practices of DoD
inadvertently foster reinvention. One example of
this is a situation where three weapon systems were
procured from three different contractors. Each
system had a common navigation component, in fact,
they used identical algorithms. Yet the navigation
software was implemented uniquely by each of the three
contractors. It is estimated that this redundancy
in procurement of software cost DoD over $10 million.

c-10

C.3 The Interrelation of Software and System Problems

When analyzing a weapon system development project
that is in trouble, it is usually very difficult to
separate the software problems from the system problems.
The problems are interrelated and no one problem or
other difficulty can usually be identified as the reason
for a cost overrun.

An example of a surveillance system that had sig-
nificant schedule delays and cost overruns is described
in the following sections. There were many problems
encountered including:

0 System design decisions that complicated
software development (taxonomy area C.3)

o Inexperienced DoD project management (D.1)
o Unstable and inadequate GFE and GFI (B.4, C.3)
o Hardware constraints on software (C.3)

It is difficult to allocate specific cost or sched-
ule overrun to each of these problems because they are
interrelated.

C.3.1 Background: In the mid 1970's development was begun
on a complex survN0.1ance system. It was to be de-
ployed in the la,, 1970's after integration with two
other surveillance systems being independently devel-
oped by other contractors. All three surveillance
systems required a special signal processing computer.
The original development budget for the surveillance
system was around $20 million. The final cost was
around $30 million and this was accompanied by a sched-
ule delay of over three years. This delay impacted
tne integration with the other two systems with addi-
tional significant cost impact. Some of the major
events leading to this situation were:

0 An early system design decision was made by
the prime contractor to build a special purpose
signal processor computer. When, due to this
computer, the development of the system failed
one of the DSARC milestones, the computer was
abandoned and the milestone repeated using a GFE
computer. This resulted in a schedule loss of
several years.

A

C -11

0 The change in the computer caused the software
to be redesigned.

0 The GFE computer and associated GFI support
software (real-time executive and compiler)
were not complete and were still unstable,
complicating software development.

0 The memory and mass storage of the GFE computer

proved insufficient for the software further
complicating the software development and
requiring upgrades to the hardware.

C.3.2 Analysis: The combined results of the above events
put the project under severe schedule pressure due to
its potential impact on two other projects. This
resulted in further cost growth as the software devel-
opment was accelerated. The final result was an
overrun of $9-11 million in cost and over three years
in schedule. Of the $9-11 million, $2-3 million is

V attributed to problems with GFI software and cost
growth in the software development. Given the inter
relation of problems it might be argued that more or
less cost should be attributed to the software.

Given this example, one is lead to question the
computerrelated experience and skills of the DoD and
prime contractor management in this project. Several
questions might be relevant, such as:

a If the signal processor was key to all three
surveillance systems, why was each allowed to
choose his own course?

O Why was no cost and schedule reserve set aside
to accommodate the known immatarity of the GrE
and GFI?

* 0 Why weren't analyses performed in the design

phase that would give advance warning on the
memory constraints?

The experience of the management of such a project
is crucial to its success. Most management of such
systems are ill-equipped to deal with technical issues
of the type raised above.

C-12!.

C.3.3 Impact: The cost impact for the single surveillance
system described was significant. It is likely that
the total cost impact to all three systems was much
greater. Yet the most significant fact was that a sur-
veillance system, key to our defense, was delayed over
three years due to interrelated computer and software
development problems.

C-13

. C.4 Artillery Fire Direction System

The requirements for a computer based tactical fire
direction system for support of U. S. Army Field
Artillery units was initially set forth in 1959, but
development was not initiated until December 1967 and
full scale production not released until November 1978.
The recorded history of this project discusses some of
the problems encountered in the software development for
this system over this long period of time.

Problem areas include: changing requirements, tax-
onomy area A.1; inaccurate estimates of software size
and schedule resulting in a lack of adequate personnel
assigned to the project, taxonomy area C.2; lack of
qualified software development and management personnel,
taxonomy reference D.1, D.2, D.3; management problems
due to split responsibility for software and hardware
development, taxonomy reference A.2.

C.4.1 Background: The Artillery Fire Support program was sub-
jected to a number of changes in user requirements
during its development period, particularly increases
in requirements for the battalion system in data base
size and ammunition type. A major management problem
for the project manager during most of the program, was
the split in responsibility for software and hardware
development. One Army Command had the software respon-
sibility and the project manager assigned to a second
Army Command had the hardware and systems responsibility.
This split responsibility resulted in imposing differences
in documentation standards and instructions on the con-
tractor. This split responsibility was finally resolved
in November 1976 by giving the project manager full re-
sponsibility for both software, system and hardware.

There was a lack of appreciation by both the contrac-
tor and Government for the time required to develop the
software, inaccurate estimates of software size whichr led to a gross underestimation of memory requirements.
These underestimates due to lack of experienced software
and management personnel with software background resulted
ir. inadequate resources for the software development.

C.4.2 Analysis: The changes in requirements for the battalion
system required the addition of random access drum
memory units as well as major changes in software
requirements increasing costs and causing delays in
the schedule.

C-14

-I

The underestimates in software size and develop-
ment effort and the accompanying lack of resources
resulted in a stretch out of the contract of over
30 months.

The split in management responsibility for soft-
ware and hardware development, resulted in conflic-
ting management control over the contractor, causing
both hardware and software deficiencies which needed
correction and caused further slippages in the program.

Another systemic aspect to this problem was the
gradual understanding that the equipment under contract
was not an isolated system unto itself, but is part of
a larger functional Artillery Support System consist-
ing of other equipments as well. The conclusion here
is that during the last decade the Army's concept of
automated field systems has become less equipment
oriented and more oriented toward entire Battlefield
Functional Areas. This has given birth to the challenge
to define the range and limitations of distributed
processing. There is a need to define this from an
operational and economic point of view, as well as
from a technical point of view. From the policy view
there is a need to recognize that policy aimed hereto-
fore at the management of specific contracted develop-
ments must be broadened to view those developments as
part of the whole fielded Army system.

C.4.3 Impact: The impact of the changing requirements, the
lack of resources due to underestimates and the split
responsibilities for software and hardware resulted in
extensions of the schedule for the program by over 65
months beyond the original schedule. This also resulted
in increased costs.

The use of incentive fees for the contractor on
EPR's in the later stages of the contract resulted in
improved performances on the program and the final
successful completion of the program with production
release in November 1978 and initial fielding in 1979.

C-15

C.5 Tactical Message Switching Systems.

C.5.1 Background: This example includes data points from two
Army managed switching procurements. Both are mobile
equipments intended for primary use in the tactical
environment and in the interconnection of that environ-
ment to the Defense Communication System (DCS) operated
in part under the direction of the Defense Communica-
tions Agency (DCA). Both systems provide the capability
to handle a variety of communication modes, codes,
formats, and transmission speeds suitable for inter-
operating with old and forecasted terminal equipments
and for interoperating, as a terminal, with the AUTODIN
system. Both systems also provide message service
in accordance with ACP 127 procedures which are message
formats and procedures negotiated with NATO and other
allies. The success of these systems depends upon how
well the software and hardware support offer fielding
can keep abreast of policy changes within the DCS,
policy changes within the allied arena via treaty, and
the insertion of new equipment into the system as a
result of wearout and/or unavailability of hardware
component parts for replacement. In the case of both
systems the functionality changes due to policy have
been supported by software implemented design changes.
Hardware changes have been the result of equipment
replacement or attempts to decrease hardware constraints
on growing software implemented functionality enchance-
ments.

C.5.2 Analysis: The two systems will be referred to here as
System A and System B. System A was built first utiliz-
ing commercial grade ADP equipment and inventory modems
and cryptographic equipments. System B was developed
later utilizing militarized hardware and new parallel
developed cryptographic equipments. Since System B
was developed in parallel with the field operation of
System A some systemic problem generalizations can be
made.

System A Analysis

System A began field service in 1971 and was developed
under a contract signed in 1968. This was possible since
the contract required the use of readily available
commercial grade equipments to be transportable via
six five ton military vehicles. Needless to say this
equipment assemblage was transportable only and not

C-16

----------------------- - -A

.2 tactically rugged. The software was the majority of
the development effort and software design capability
for the message switching functional area was organic
to the prime contractor.

System A Software Change Experience

To measure the scope of change to System A an operating
period beginning July 1976 through October 1978 was
studied. This period was well after the initial field-
ing date of March 1971 and does not therefore represent
initial fielding changes that occur with the fielding
of new equipment. Rather, the study period represents
the steady state condition typical of communication
message switching systems. During the study period
15,908 records (instructions) were modified, added,
or deleted in the support and fielded maintenance
tools alone. This equates to a 13% modification of
maintenance software.

In terms of the software programs necessary to send
and receive messsages approximately 14,500 records were
modified, added, or deleted representing a 14% modifica-
tion.

Most of these software changes were related directly
to policy changes emanating from DCA in response to the

-. Joint Chiefs of Staff. The conclusion is that it is
normal for open loop policy dependent systems to change
with a functionally expanding global system. As we

-. look to the future and other expanding forms oi distri-
buted processing in communications and other C areas
it is clear that functional changes made to our auto-

-, mated equipment will ripple across all associated auto-
mated equipments in ways which will appear unscheduled
and misunderstood. Since the functionality of modern

" communications systems and equipments has become imple-
mented more and more within software it is clear that

-, system configuration management must now be defined in
terms of functionality in lieu of hardware components
and piece parts. There is a need to develop an expan-

* - sion of configuration management to include a view
of collections of systems in terms of common function-
ality representation, taxonomy reference A.1, changing

-requirements and A.2, confirguration management.

C-17

System A Hardware Change

The basic driver for System A hardware changes was
the initial commitment to commercial grade ADP equip-
ments. Within the field 24 hour per day operational
environment it was placed, System A required a regular
ongoing hardware change policy which was named "piece-
wise modernization.9 This policy required that replace-
ment of degrading hardware meet one or both of two
criteria: that the subsystem is neither reasonably
repairable nor economically maintainable; that the modi-
fication be cost effective in terms of maintenance
and/or operational costs prior to the planned end of
life cycle or 1984. There were many hardware redesign
changes made primarily in the power subsystem, the
environmental/control subsystem, and the computer
subsystem.

Within the computer subsystem the front end computers
(three each) were replaced with a more modern minicom-
puter emulating the original computer selection.
This was necessary due to nonavailability of core
memory stacks and a variety of piece parts and logic
boards. The emulation technique allowed the preserva-
tion, and indeed enhancement, of the software imple-
mented functionality, taxonomy reference C.3, design
attributes.

The primary conclusion reached from this experience
is that the expectation of parts being unavailable
over the System A life cycle due to use of commercial
equipments created the need for an end of useful life
economic analysis of hardware change through which
knowledgeable support management decisions were made.
The life cycle of a commercial computer asset depends
upon the market seen by the manufacturer and not the
specific weapon system manager who may choose to use
it. In addition, the continual emergence of new
electronic hardware technology and its migration to
commerical and military products must be taken into
account by making the software implemented system
functionally immune to hardware technology transfer.
This is a primary motivator for the Army MCF program
in which dimensions, interfaces and the instruction
set architecture are the only hardware parameters
held constant over time.

C-18

'.-**.'- **. mI 9: J - -

9-

System A Support Personnel Change

The support of System A by government only personnel
was accomplished via a transition plan between March
1974 and March 1975. It has become clear in 1973
that the contractor software support of System A
was becoming too costly for both the contractor and
the Army. It is not feasible to turnkey the support
function from one group to another for a complex
system such as System A which utilizes five computers
and over 150K lines of code in the main switching func-
tion programs. Because of this, transition occured
in steps. First the direct system engineering functions
and management functions were bought win-house.* Next
contractor personnel and equipment were placed among
assigned civil service engineers. Finally, the con-
tractor personnel were withdrawn. A policy was deve-
loped to provide group representation through internal
training and planned turnover of personnel over time.
A minimum essential level of seven personnel was estab-
lished below which corporate knowledge could not be
maintained over time. The conclusion from this exper-
ience is that personnel resources must be managed in
terms of system functionality and complexity if work-
force regeneration is to be fueled correctly. Docu-
mentation alone, however good, is not sufficient to
sustain corporate knowledge and understanding over
time. Better economic management models based upon
functionality and human cognition needs are required,
taxonomy reference D.1, D.2, personnel skills and
availability.

System B Analysis

As previously stated above the Army experience with
System B development overlapped System A field support.
Both functions were supported by the same Army organi-

-zational unit. System B requirements were more demand-
ing than System A. Beside the requirement to achieve
a greater than 200% reduction in equipment volume and
weight over System A, the System B functionality was
also greater than that of System A. Like System A,
the System B development effort was largely software
implementation oriented. Unlike System A, a large
portion of System B was developed via subcontract
to a firm specializing in communication software.

C1

" C-19

4-

9,' " :- , . ; ;: . - - , : - - - -_ .. ,- ,.. ,- 2""") , - , -: : ;? -: :-'-" : "; : i :i : -l : .

System B Software Change Experience

Based, in part, upon what had been learned with
System A, the functionality requirements imposed by
the evolving DCS AUTODIN system were withheld from
the system B contractor so as to achieve and hold a
contract technical baseline. This strategy permitted
an integrated hardware and software solution to emerge
so modifications could be contractually made without
loss of management control. In addition, after success-
ful CDT and DT/OTE testing two development models were
provided to US Army Europe for early fielding so as
to get early field troop experience. Managed stepwise
upgrades were then planned and executed. The first
limited AUTODIN upgrade consisted of nineteen function
changes and was fielded in the spring of 1980. A second
extended AUTODIN upgrade added six more functional
changes and was available in the fall of 1980. The
systems were then used in four major field exercises
during which some twenty-five specific problems were
detected and resolved in four more software releases,
the last being in the winter of 1982. In addition,
this release included five enhancements generated as
the result of the USAEUR experience. After this another
release was developed and fielded in the spring of
1982. This change included 17 more specific changes
originating from the AUTODIN evolution. Currently
another modification is in progress which includes a
new interface design and operational enhancement changes.
The conclusion here is that in addition to AUTODIN

*' evolution imposed changes the system must absorb changes
*due to other new terminal and network control equipments

being designed in parallel with or logging with System
B. Switching systems must always bear the brunt of
interoperability changes that are driven by new terminal
equipment and network control designs, taxonomy reference
A.1 changing requirements and A.2 management.

System B Hardware Changes

Unlike System A, System B was developed using newer
available technology. This provided the realization
of the physical size and weight reduction mentioned
above. However, it was noticed that the prime contrac-
tor provided a large number of non-standard part
requests during the System B development. Approxi-
mately 75% of non-standard parts submitted in the
first five years of the contract had become standard
by the end of that period. This suggests that standard

C-20

parts are no longer as time invariant as they once
were. As newer technology is absorbed into military
systems the concept of standard meaning common use
over a ten to fifteen year period is no longer true.
Again the conclusion must be reached that system
functionality must be managed in a way that makes it
highly immune to hardware technology change. The
Army MCF program is designed to accomplish this.
Again what is needed is a new definition of configu-
ration management based upon functionality specifica-
tion across systems. This configuration management
strategy must accommodate both hardware and software
solution projections, taxonomy reference A.2, config-
uration management.

System B Support Personnel Change

Since System B is just now in production with some
units in the field on an experimental basis all support
functions are completely on contract. However, there
is now a group of military and civilian personnel
assigned to preparation for the eventual support of
System B from an identified Army Software Support Center.
This'is in conformance with the Army Post Deployment
Software Support (PDSS) Concept Plan identified else-
where in this report. With respect to personnel the
implementation requires a 1:1:2 ratio or one military
to one civilian to two contractor persons to support
several equipments on a shared basis. While this has
been determined through Army experience and comparison
with other service and industry experience a clear
economic management model which includes people, equip-
ment, and software tools and methods must be developed
to determine the minimum essential resources required
to sustain real support of system/software taxonomy
reference D.1, D.2, personnel availability.

C.5.3. Impact: The Army communication switching experience
an other experiences not documented here suggests
that there are two kinds of change incident on Army
communications and C2 system changes which are require-
ments generated and which provide for interoperations
and distributed processing; and changes which occur
in random ways due to continual hardware technology
improvements and their effect on the market place.
The rate of change in both of these change categories
is the single systemic cause for military system

C-21

software support cost increases. By realizing that
operational system functionality must be managed
and primarily implemented in a software solution, it
is possible to achieve control over system evolution
without total redesign. By realizing that management
of the logical properties of computers is an extension
of this concept of functionality management to include
hardware as well as software functional implementation,
it is possible to absorb both change generators and
to achieve true functional transportability over time.
The biggest barrier to this achievement is the lack
of economic decision centered management tools and
methods to include configuration management tools and
methods built upon functionality and the expectation
of functionality change, taxonomy reference A.5,
rapid technology change and A.2, management.

C-22


~~~~~~~~~~. ,.,.,... .. . . .. . . .. ................ . . r .... . . - , . . i ..

C.6 USAF F/FB-lll Post Deployment Software Support

It is generally recognized that embedded computer
system (ECS) software provides the potential for flexi-
bility in responding to system problems and mission
requirements over the life of the system. One example
of this flexibility is presented here for the F/FB-1ll
aircraft. This data comes from ECS Software Manage-
ment and Support After System Deployment, May 1977,
and Predictive Software Cost Model Study, June 1980.

C.6.1 Background: The F/FB-l1l fleet includes qome aircraft
models which contain only analog avionic .nd other
models which are digital. The FB-11A i F-111F digi-
tal aircraft contain operational flight igrams (OFP)
which were developed by Autonetics in 19 for use in
the IBM CP-2 embedded computers. Each z --aft contains
two identical computers, one for weaponi ivery and
one for navigation. The CP-2 is a 16-bi6 word size
machine with 16K of memory. Memory fill for the last
several years in each case has been 99 percent. AFLC
presently has a modification program to replace these
computers (on the F-111D/F and FB-IIA) with a machine
having a newer architecture (MIL-STD-1750A), 64K of
memory, 462 KOPS (three fold increase in speed) and
3500 hours MTBF hardware reliability. The program
runs through 1987, including recoding the OFP's in
JOVIAL J73 language.

C.6.2 Analysis: Resources - Sacramento Air Logistics Center
(SM-ALC) is responsible for post deployment software
support (PDSS) of the F/FB-lI Aircraft. They support
seven OFP's: one for each of the two CP-2 computers
on each of the three aircraft type (F-llID, F-111F,
FB-111A) plus one OFP for the navigation computer
unit, common to all three aircraft. As of December
1979, they had 90 people, mostly engineers, for this
PDSS workload: 80 at SM-ALC (20 government employees,
60 contractor personnel) and 10 off-premise contrac-
tors. They occupy about 11,000 square feet of facil-
ities. The engineering lab where this is done (i.e.,
Avionics Integration Support Facility (AISF)) contains
equipment which cost $40 million. The support software
in the AISF consists of over 700,000 source lines of
code. Flight testing requires 120 flight hours per
year: this is based on one block change every eighteen
months for each aircraft type; or one block change
every six months.

C-23



Software Change Activity - For data collected
over a ten year period (1970 - 1979), about 1/2 of the
changes were corrections (both errors and design defi-
ciencies). About 1/3 were refinements (including
deletions and optimizations). Most of the remainder
(5-15%) were additions to existing capability. It
should be noted that these numbers vary widely by
system (e.g., the same report noted the A-7D aircraft
change activity had been mostly adding capabilities -
40%). The relationship between number of changes
implemented and manhours expended is on the order of
1000 hours per change, with a range of 700 - 1600
hours. These hours are based on an OFP change process
which includes a feasibility study phase (change
requirements/problem analysis), development phase
(preliminary design and development including coding),
integration/implementation (of all OFP block change
requirements), formal test and evaluation (including
user OT&E), and documentation and publication/distri-
bution of the production OFP tapes. These hours
include much more than code modification.

C.6.3 Impact: The fundamental difference between software
and hardware that permits software modifications to be
implemented faster and cheape- is software does not go
through a production phase and requires no modification
kits. With the exception of documentation, the cost
and time for a software change is primarily consumed
in developing and testing the prototype, which when
complete can be immediately sent to the field for
operational use. As an example, the following data is
from the F/FB-lll program and shows cost and time for
implementing comparable capabilities (additional off-
set aim points and updated weapon ballistics) through
hardware on the F-lllA/E (analog) aircraft and through
software on the F-lllD/F (digital) aircraft:

MOD HARDWARE SOFTWARE

(1) $5.278M/42MO $0.1M/16MO

(2) $1.05M/36MO $0.02M/10MO

(3) $8.OM/78MO $0.02M/15MO

The hardware implementations were on the order of 50
times more expensive and took four times longer than
the software implementations.

C-24

.4



APPENDIX D

Current Initiatives Description



INTRODUCTION

Appendix D contains a description of a selected number of
the DoD, Tri-Service, and Service projects aimed at addressing
the problems in developing, maintaining and managing embedded
computer software. The projects (i.e., initiatives) are
divided into two broad categories, one for DoD and TriServices
initiatives, and one for the three Services. These descriptions
are included to give an idea of the scope of projects aimed
at improving DoD's use of embedded computer resources software;
they are not meant to be an exhaustive list of DoD initiatives.

D-1



' .,- .,- . . - . .. . .=- .. . . . . . . .... . ..-. . . . ...-i/ 
•  

' i >L I I.;

List of Initiatives Presented

PAGE

D.1 DoD Initiatives

D.1.1 Ada - The New DoD Standard Language D-3

D.1.2 JLC - The Joint Logistics Commander's D-6

Initiative

D.l.3 The Software QA&TE Initiative D-9

D.1.4 DoD 5000.5x Initiative D-11

D.2 Service Initiatives

D.2.1 TEPCO - Tactical Embedded Computer D-13

Program Office

D.2.2 SEEWG - Software Engineering Environment D-17
Working Group

D.2.3 Coordination of Program 6.2 Funds Within. D-21

NAVMAT

D.2.4 HQNAVMAT/SYSCOM Tactical Embedded D-22

Computer Software Impact Study

D.2.5 Embedded Computer Systems Support D-25

Improvement Program (ESIP)

D.2.6 AFSC Vanguard Planning System D-29

D.2.7 Post Deployment Software Support D-32

D-2



D.l.1 Ada - The New DoD Standard Language

D.l.1.1 Responsible Activity: Ada Joint Program Office,
Office of Deputy Undersecretary of Defense, Research
and Advanced Technology (DUSDR&AT)

D.l.1.2 Scope of Activity: The Ada program is a DoD-wide pro-
gram to establish a common high order language for em-
bedded computer systems, and to provide a programming
support environment for software developed under Ada.
Although the AJPO provides overall management of the
program and has specific responsibility for the common
interest, the program is executed by the individual
services.

D.1.1.3 Description of Activities: The Ada program extends
well beyond simple language standardization and will
help control the cost and improve the quality of software
by facilitating the application of modern software develop-
ment practices. The Ada Joint Program Office (AJPO),
attached to the DUSDR&AT, is managing the DoD effort to
implement, introduce, and provide life-cycle support for
Ada. It manages the maturation and evolution of the Ada
language and support systems. The AJPO coordinates the
development of an Ada Programming Support Environment
(APSE), and encourages development of the supporting
culture, including management and technical discipline,
to assure the DoD a consistent, integrated, programming
system which will enhance software portability and afford
maximum availability of common tools needed to develop
and support defense systems software. There are three
major Ada program objectives in support of this purpose,
language standardization, introduction and acceptance,
and support systems.

Language Standardization

First, Ada must be defined as a consistent, unambiguous
standard recognized by the DoD and also by the widest
possible community. Recognition of Ada as a standard
is a necessary step in the realization of portability
for software and people. A difficulty experienced by
most other computer languages is the failure to control
adherence to the formal definition by implementers,
and the resulting proliferation of dialects through
subsetting, supersetting and inconsistencies.

D-3



In pursuing the acceptance of Ada as a standard out-
side of the DoD, a certain amount of control must be
shared with the standards bodies. This is an advan-
tage in that it will provide a baseline for Ada and
protect the language from future whimsical or capri-
cious changes by the DoD or any other body. The
AJPO is in the late stages of the American National
Standards Insitute (ANSI) canvass process to gain
acceptance of Ada as an ANSI standard. Through
ANSI X-3, the AJPO is pursuing standardization with
the International Standards Organization (ISO) Tech-
nical Committee 97, Subcommittee 5.

Introduction and Acceptance

Second, Ada must be introduced and accepted in the
DoD as early as possible, consistent with the needs
of individual components.

There are a number of projects which could benefit
from an early introduction of the language. The
momentum of the Ada program has produced a climate
ripe for early acceptance. However, the advantages
offered by the use of Ada will not be realized
unless the programming support environment is also
available. Therefore, this objective must balance
the need for an early introduction of the language
against the risk of a premature introduction. Ada
should not be employed on a major DoD program until
the Ada Programming Support Environment (APSE) is
available to support the needs of that project.
The AJPO is responsible for providing current infor-
mation to DoD program managers who must choose a
language for their programs. The AJPO consults
with those program managers to ensure that the
appropriate support systems are developed. Use of
Ada as a Program Design Language (PDL) is being pro-
moted and this strategy has already been adopted by
some DoD programs.

Support Systems

Finally, the DoD must ensure the provision of life-
cycle support for Ada through the development of a
robust Ada Programming Support Environment (APSE)
to improve productivity both in development and in
continued evolution.

D-4



Ada is not simply a new language. By design, it
incorporates many of the features needed to support
modern programming practices. As such, Ada intro-
duces a new culture which will be fully realized
when a sophisticated Ada Programming Support Envi-
ronment is made available and is widely accepted and
used. A robust APSE, complete with advanced develop-
ment and management tools, will provide the oppor-
tunities for substantial improvement in life cycle
software management. Although each Service employs
a different strategy in the acquisition and manage-
ment of software, there will be a set of tools which
can be shared.

The Navy has been tasked to lead a joint service
review team to identify and recommend conventions
for DoD-supported APSEs; this is in support of a
Memorandum of Agreement between OUSDRE and the
Service Assistant Secretaries to work toward a
consistent set of APSE interfaces. Contracts will
be awarded to develop tools targeted to reside on
the Army and Air Force funded developments.

Additional Ada Programming Support Environments are
expected to be developed independently by academia
and industry. These APSEs will not all be
compatible with the chosen conventions. However,
tools which are sufficiently powerful may be
modified to interface with the APSE. The AJPO
will foster development of a highly complete and
powerful APSE so that it becomes the leading candi-
date to evolve as the predominant support system.
This should encourage designers of independently
developed tools to conform to the chosen conventions.

The AJPO is beginning preliminary investigations
which will lead to tailoring of modern programming
disciplines, supported by automated tools, to the
use of Ada. This activity is expected to increase
productivity and improve the quality of software.

A consequence of this objective is a requirement for
close cooperation with the industrial sector to
encourage acceptance of the language and development
of Ada products in the marketplace. Cooperation
outside the U.S. has also brought much vital techni-
cal input. It has made possible an exchange with
our allies and a more viable relationship with the
the multinational computer and defense industry.

D-5



D.1.2 Computer Software Management Subgroup to the Joint
Logistics Commanders Joint Policy Coordinating Group
on Computer Resource Management (JLC JPC-CRM-CSM)

D.1.2.1 Responsible Activity: This subgroup consists of a
single representative from the Army, Navy, Air Force
Systems Command, and Air Force Logistics Command.
The present lead office of the CSM is HQ AFLC/LOEC.
The present lead office of their parent group (CRM)
is HQ Army/DARCOM.

D.1.2.2 Scope of Initiative: To address the problems
related to the acquisition and support of embedded
computer systems, the Joint Logistics Commanders
(JLC) established the Joint Policy Coordinating
Group on Computer Resource Management (JPCG-CRM).
The JPCG-CRM chartered a subgroup on Computer
Software Management (CSM) to serve as a focal point
for coordination of activities related to the
acquisition of computer software used in support of
defense systems.

The mission of the CSM Subgroup is to review
policies, procedures,-regulations, and standards
relating to computer software, and forward specific
recommendations to the JPCG-CRM on critical areas
related to software acquisition management,
including software development, quality, testing,
and post-development support. These recommendations
should describe and justify specific actions to be
taken by JLC or DoD agencies. Furthermore, such
recommendations should aid in the improvement and
standardization of the software acquisition process
with the JLC and DoD communities.

D.1.2.3 Description of Activity:

a. The initial review of current DoD policy and
guidance in the area of software management was
accomplished by the CSM in 1979. The information
reviewed was often conflicting, redundant, or in
some cases, lacking. A software workshop was
conducted in April 1979 (Monterey I) to review
areas where shortcomings existed and to make
recommendations for the improvement and standard-
ization of the DoD software acquisition process.

D-6



The results of the April 1979 software workshop are
documented in two volumes and can be ordered from
the Defense Technical Information Center (Volume I -
Implementation Plan - ADA 103491, Volume II -
Proceedings of the Software Workshop - ADA 103485.
See abstracts in Appendix B). Principal findings
of the workshop were that:

Differing policies exist among the Services,
producing differences in emphasis and nomen-
clature with varying interpretations and
degrees of implementation.

* Within DoD, there are a number of diverse
regulations and standards covering the various
aspects of software acquisition. Partial
and inadequate standards coupled with a lack
of standardization of Data Item Descriptions,
lead to delivered software products which are

. often unsatisfactory.

o Difficulties in the implementation of software
quality assurance (SQA) arise from the lack
of well-defined consistent requirements,
differences in SQA approaches by the Services,
and unavailability of experienced personnel.

Unlike hardware, successful development of
software cannot be based simply on passing a
definitive series of tests at the end of
development. However, there is no standard
set of software acceptance criteria within
DoD.

Key recommendations in the final report of the
workshop were to:

0 Develop a general policy framework for the
joint Services, to address the entire software
life cycle.

o Develop a single unified set of acquisition
and development standards for joint Service
application.

As a result of these recommendations the JPCG-CRM
took upon itself a plan of action. This plan of
action included five tasks.

D-7

---------------------- o A- .______



o Generate a plan for software acquisition policy.

o Develop a single, unified set of acquisition
standards for tri-Service application.

o Develop a comprehensive set of DIDs, subsets
of which would be applicable to any DoD
software contract.

* Generate a data item description for a
contractor's software quality assurance plan
as a tri-Service DID.

o Define and develop software acceptance policy,
procedures, and criteria for the acquisition
of software in defense systems.

Each task has been initiated. A draft Software
Acquisition Policy is currently being reviewed priorto publication. Draft standards for tasks two and
three exist, and publication for review is expected
in the first half of 1982.

b. In June of 1981, the same group sponsored a
second workshop (Monterey II) which also included
technical personnel from the Services, other Federal
agencies and industry. The purpose of this second
workshop was to continue the discussion and to
review additional documentation and software manage-
ment areas for standardization with DoD. Five
panels were established for this purpose.

0 Data Item Description (DID) study review

0 Hardware/software/firmware configuration item
selection criteria

o Standardization and accreditation of computer
architectures

o Estimating software costs

o Software Reusability

A draft report of the proceedings of this workshop
was issued in November of 1981. (ADA 109 441)

D.1.2.4 Index to Problem Areas: A.2, A.3, A.4, A.5, B.2,
B.3, B.4, C.2, C.4.

D-8

°'" ...



D.1.3 Department of Defense - Software Test and Evaluation

Activity

D.1.3.1 Responsible Activity: USDRE

D.l.3.2 Scope of Initiative: The objectives of the
initiative are to:

0 Develop and promulgate policy for DoD com-
ponents in the test and evaluation of computer
software.

o Stimulate the creation and application of im-
proved tools and techniques for software test
and evaluation.

o Support the development of guidelines and cri-
teria for use in software test and evaluation.

* Promote uniform and consistent DoD standards
where appropriate in the test and evaluation
of software.

The initiative is being directed out of OSD (USDRE),
but the study effort is being conducted by Georgia
Institute of Technology and Control Data Corporation
under contract to DoD. The military services includ-
ing service headquarters, material commands, program
managers, operational test and evaluation agencies,
and test organizations are included in the study.
A sampling of contractors to the government is
being surveyed, but an industry-wide viewpoint is
being solicited through the NSIA.

D.l.3.3 Description of Activities: The initiative will be
completed in four phases:

o The survey phase is currently underway. The
contractors are preparing a draft report that
addresses both the state-of-the-art in soft-
ware test and evaluation technology and the
current practices within the military services
and industry.

o The second phase will be an analysis of the
survey by a panel of experts from DoD, industry
and academia.

D-9



o The third phase will be an assessment of the
need for new and/or revised policy.

The final phase will be the development and
promulgation of policy for DoD components to
follow in the test and evaluation of computer
software.

D.1.3.4 Index to Problem Areas: A.2, A.3, A.4, B.1, B.2,
B.4, C.1, C.4, D.1, D.2, D.3.

D-10

oV.



D.l.4 DoD 5000.5x Initiative

D.1.4.1 Responsible Activity: Deputy Under Secretary (Research
and Advanced Technology)

D.1.4.2 Scope of Initiative: The scope is to establish stand-
ards for instruction set architectures for embedded
computers within DoD.

D.l.4.3 Description of the Activity: The 5000.5x initiative
is a proposed DoD instruction that will establish
standard instruction set architectures (ISAs) for
DoD and set guidelines for additional ISAs. A re-
quirement of the ISA work is ownership of (or free
rights to).the architecture. This ownership is
needed to ensure the implementation of the architec-
ture can be procured competitively.

MIL-STD-1862 is an ISA for a 32-bit standard embedded
computer; it was developed by the Army. The Air Force
is coordinating with the Army on MIL-STD-1862 since
the Air Force does not have its own 32-bit ISA stand-
ard. MIL-STD-1750 is a 16-bit ISA for avionics use;
it was developed by the Air Force.

The Navy has had ECR ISA standards since 1968 for
32-bit machines, and since 1973 and 1975 for a 16-bit
ISA. It is currently developing a new series of
standard ECRs based on these standard ISAs including
the AN/UYK-43 (32-bit ISA), AN/UYK-44 (16-bit ISA),
and an enhanced modular signal processing (EMSP)
AN/UYS-2 (ISA to be determined based on winning
contractor -- data as of 6/82).

Expected benefits of a standard ISA are:

o Reduce ECR software development and maintenance
costs through use of a standard set of languages
and tools, and through possible reuse of existing
software.

* Reduce training costs for ECR programmers through
the use of standard languages and tools for a vari-
ety of ECR applications.

D-ll



-7

O Reduce software support costs since programming
support and testing support would be for a limited
set of ISAs.

o Reduce problems in logistics and hardware mainte-
nance.

D.1.4.4 Index to Problem Areas: A.5, B.1

D

D- 12

- - I ' ' I " "I " . . " . ..



D.2.1 TECPO - Tactical Embedded Computer Program Office

D.2.1.1 Responsible Activity: Chief of Naval Material (MAT08Y)

D.2.1.2 Scope of Initiative: The "Master Plan for Tactical
Embedded Computer Resources" dated April 1982,
establishes the Navy's master plan for the develop-
ment, acquisition and management of embedded computer
resources (ECR). This master plan covers all aspects
of use, development and support of embedded computers
within the Navy. It excludes general purpose com-
puters except as needed for support facilities.

The Master Plan outlines strategy and objectives for
ECR within the Navy. The strategy is to continue the
Navy's significant effort in standardization. The
Navy has been developing standard instruction set
\architectures (ISA) since 1969 (with the 32-bit
AN/UYK-7 and in 1973 for the 16-bit AN/UYK-20). The
goal of the Master Plan is to develop, improve and
replace all standard ECR in an orderly manner. This
goal includes software, personnel and training as
well as hardware. Figure D.2-1 summarizes the Master
Plan strategy.

The program covered by this master plan is being man-
aged by the Tactical Embedded Computer Program Office
(TECPO), within the Naval Material Command (NAVMAT).
TECPO develops policy and guidance for the use of ECR
in tactical digital systems, assigns Systems Commands
(SYSCOMs) for development, provides direction, controls
budgets for ECR R&D, and appraises results.

In order to implement the Master Plan Strategy, NAVMAT
will:

o Competitively develop and procure the AN/UYK-43, an
advanced 32-bit ISA. It must replicate the AN/UYK-7
ISA and be able to use AN/UYK-7 software.

o Competitively develop and procure the AN/UYK-44
reconfigurable microprocessor and microcomputer
family, a 16-bit ISA. It must be able to use
AN/UYK-20 and AN/UYK-14 software. The AN/UYK-44
will be available as a standard chip set, cards,
or fully packaged computer.

D-13



Near Term Long Term_Problem

CP-642 obsolescence AN/UYK-7, AN/UYK-20
AN/UYK-43, AN/UYK-44

NAVY
AN/UYK-7 obsolescence AN/UYK-43

EMBEDDED

COMPUTER
AN/UYK-20 obsolescence AN/UYK-44

PROGRAM

Lack of standard AN/AYK-14airborne computer

Lack of standard AN/UYS-l (ASP). AN/UYS-2 (EMSP)
signal processor Develop AN/UYS-2

Standard disk system Develop high tech- High technology
obsolescence nology mass memory mass memory

system

Proliferation of Develop standard Standard medium
non standard medium medium scale modular scale modular
scale displays display subsystem display subsystem

Programming support Upgrade current Navy Ada compatible
deficiencies standard programming standard Soft-

support systems; de- ware Engineering
velop Ada based soft- Environment
ware engineering
environment

Proliferation of Navy Phase out divergent Implement Ada as
programming languages dialects; develop Ada single Navy stan-
and dialects language capability dard programming

language

Lack of centralized Establish single CNO sponsor for develop-
and comprehensive ment and life cycle support of all Navy
Navy TECR management standard embedded computer resources.

Figure D.2-1: Summary of Master Plan Study

D-14



- -v ~ - - . .7r s- -.--

O Competitively develop and procure a standard
enhanced signal processor (AN/UYS-2) to succeed
the AN/UYS-l.

o Ensure the above new standard ECRs are modular
to allow for future advances in technology.

o The existing body of support software will be
improved, enhanced, and expanded as needed to
support new computers, and will be standardized
for common usage.

Survey support software activities to foster wider
use of existing software and to identify gaps for
6.2/6.3 R&D opportunities.

o Develop software tools to improve system designer
and programmer productivity and accuracy.

o Stress interoperability in all ECR projects.

o Require the use of standard high-order languages
(CMS-2 and SPL/I now and Ada later).

D.2.1.3 Description of Activity: The charter for TECPO is
to implement the Master Plan and establish poilicies
for Navy use of ECR. TECPO's emphasis is on the ac-
quisition of ECR including the hardware of embedded
computers and related support software, and implemen-
tation of ECR policies for the Navy.

Four organizations were created to manage the Navy's
ECR activities and to ensure the ECR standards are
implemented:

o MAT 08Y, the TECPO, functions as principal develop-
ment activity in the area of research, development,
and acquisition of ECR, support software, and related
digital equipment.

o PMS-408, in the Naval Sea Systems Command, is the Navy
shipboard ECR project office. It is the development
activity primarily for shipboard ECR and associated
software support.

D-15



AIR-543, in the Naval Air Systems Command, is the
Navy air ECR project office. It is responsible for
all development activity for ECR for airborne use.

ELEX-814, of the Naval Electronics Systems Command,

is the Navy electronic group charged with the central
management of Navy CNI and computer technology
(exploratory development only) R&D programs.

D.2.1.4 Index to Problem Areas: A.2, A.5, B.1, B.2, B.3, B.4

D-16



D.2.2 SEEWG - Software Engineering Environment Working Group

D.2.2.1 Responsible Activity: Chief of Naval Material

D.2.2.2 Scope of Initiative: The Software Engineering Envi-
ronment Working Group (SEEWG) was established by
the Chief of Naval Material (MAT 08Y) on April 27,
1981. Its purpose was to coordinate current and
planned software engineering environment (SEE) ini-
tiatives in the Naval Systems Commands to ensure
they are well integrated and non-redundant. Further,
it was to provide a NAVMAT focal point for addressing
software engineering environment issues, and to
coordinate action on critical SEE related efforts.

The specific objectives defined in the SEEWG charter
were:

o Provide a focal point for SEE activities within
the Naval Material Command (NAVMAT).

* Coordinate current and planned SEE projects
within NAVMAT to ensure consistency, compatibil-
ity, and non-redundancy of effort.

o Develop a specification for Navy SEEs that is
based on the Navy Minimum Ada Programming Support
Environment (MAPSE).

o Guide the assimilation and integration of standard
SEEs into the Navy software development process.

Phase I of the SEEWG ended in March, 1982, with
the publication of the "Report of the NAVMAT Software
Engineering Environment Working Group.* This report
contains three parts: an executive summary; a frame-
work for a SEE including a definition of a SEE and
the description of an abbreviated software engineer-
ing process; and a method for a SEE's implementation
and introduction into the Navy. This report meets
the objectives of the SEEWG charter.

Plans for phase II of the SEEWG involve implementing
the concepts discussed in the SEEWG report.

D-17



tn°

D.2.2.3 Description of Activity: The SEEWG members repre-
sent a number of the principal software engineering
projects within the Navy. Their common effort to
define the nature of a standard SEE for the Navy
has received significant recognition in both the
Navy software development world and in industry.
Momentum towards a new software engineering process
for the Navy has been created which can be exploited
to assure the development and introduction of new
tools and techniques. NAVMAT and a re-chartered
SEEWG in Phase II will manage this process to capi-
talize on the progress thus far.

The objectives of developing requirements for a MAPSE-
based SEE is addressed in the SEEWG report section
entitled "Framework for a Navy Standard Software
Engineering Environment." It should be noted that
the Framework proposed is preliminary to formal spe-
cification of requirements for acquisition purposes.

The objectives of guiding assimilation and integra-
tion of standard SEE's into the Navy software devel-
opment process has been addressed both in the Frame-
work document and in the section entitled "Evolution
Plan for a Navy Standard Software Engineering Envi-
ronment." This SEEWG product deals specifically
with the transition process from the current situa-
tion to the future standard SEE and also with subse-
quent technological innovation.

Thus, the two tangible products of the SEEWG effort
are the Framework and Evolution Plan documents.

The main conclusions of each are summarized as follows.
Framework for a Navy Standard SEE:

o The SEE must support the entire software life cycle.
A life cycle model has been developed in which to
view software development as an incremental process.

o The SEE must be methodology-driven. A collection of
tools is of little benefit in the absence of an inte-
grating discipline for their development.

o A comprehensive set of tools and techniques to sup-
port each activity in the software life cycle have
been identified.

D-18



The information products derivable in each activity
of the life cycle have been categorized according
to whether the information must be baselined in
the SEE data base or not. Baselined products are
configuration managed and persist over the life
of the software system being developed. Thus,
the nature of the environment's data base is fun-
damental to the choice of tools provided and to
the integrating discipline for their employment.

Evolution Plan for a Navy Standard SEE:

o The Navy Standard Software Engineering Environment
(NSSEE) will be based on the Minimum Ada program-
ming Support Environment (MAPSE).

o Existing Navy application projects and support
systems cannot be ignored and should be able to
gain some benefit from the concepts and products
resulting from the definition and development of
the NSSEE. An approach is described to assure the
smooth transition to a modern Navy standard SEE.

O The Navy must build at least one integrated tool
set that will operate through all phases of the
life cycle model. The availability of such a
Navy standard SEE and the control afforded by the
baselining of standardized information products
will greatly improve the Navy's ability to manage
the acquisition and maintenance of effective soft-
ware systems at reduced life cycle costs.

o Current policies, standards, and guidelines need
to be changed in order to provide a framework
within which a NSSEE can be built and used.
Evolution of these policies, standards, and
guidelines will be necessary as the Navy standard
SEE evolves.

0 Training/education is extremely important for man-
agers, developers, and users of the NSSEE. Under-
standing how to use the Navy Standard SEE compe-
tently is crucial to deriving any benefits from it.

o The need for a research and development effort is
identified to ensure the timely maturing of software
technology to support full implementation of the
desired Navy Standard SEE.

D-19



Perhaps the most important result of the SEEWG effort,
however, may be the attention it has drawn to the need
for a standard software engineering process to support
the effective use of the Ada programming language in
Navy applications. Momentum for a modern Navy stand-
ard SEE has begun. Action by NAVMAT will now be taken
to see that the SEEWG recommendations give rise to
actual specifications for a NSSEE and to policies
and standards appropriate to support it.

D.2.2.4 Index to Problem Areas: A.1, A.2, A.5, B.1, B.2, B.3,
B.4, C.3, C.4, D.1

D-20



D.2.3 Coordination of Program 6.2 Funds within NAVMAT

D.2.3.1 Responsible Activity: Naval Material Command and the
three System Commands.

D.2.3.2 Scope of Initiative: The 6.2 program funds are used
for advanced development of ideas, techniques, meth-
odologies, etc. NAVMAT and four activities within
NAVMAT are coordinating the planning and allocation
of these funds for the maximum benefit to the Navy.
These four activities are: the Office of Naval
Research (ONR), the Naval Electronic Systems Command
(NAVELEX), the Naval Air Systems Command (NAVAIR),
and the Naval Sea Systems Command (NAVSEA).

D.2.3.3 iescription of Activity: Program 6.1 funds are used
for exploring the value of ideas applicable to tac-
tical warfare programs (i.e., exploratory develop-
ment). Program 6.2 funds are for further develop-
ment of ideas which look most promising (i.e.,
advanced development). The ideas which then look
most promising are implemented via 6.3 and 6.4 fund-
ing.

Program 6.2 funds within the Naval Material Command
are being coordinated across four major NAVMAT
activities. The objective of the 6.2 coordination
effort is to determine the best use of advanced
development (6.2) funds for NAVMAT. The focus is
on today's and tomorrow's problems, either generic
or specific. Many ideas proposed for 6.2 funding
are evaluated for their long and short-term value,
their cost versus their benefits, their technical
feasibility, and their applicability to NAVMAT and
its customers.

The 6.2 coordination effort is starting to achieve
results. Users, who want to ensure their needs are
heard, are becoming more and more involved in the
Program 6 process. This ensures that funding is
focused on known shortcomings in the systems and
projected user's needs. Funding coordination,
once focused only on 6.2, is starting to influence
funding plans for 6.1 funds as well as 6.3 funds.

D-21



D.2.4 HQNAVMAT/SYSCOM Tactical Embedded Computer Software
Impact Study (also referred to as the NAVMAT TECS
Impact Study)

D.2.4.1 Responsible Activity: Chief of Naval Material

D.2.4.2 Scope of Initiative: The primary purpose of the
HQNAVMAT/SYSCOM Tactical Embedded Computer Software
Impact Study was to determine the impact of ECS soft-
ware on NAVMAT field activities and to provide infor-
mation required for decisions and planning to modify
that impact. A secondary purpose was to provide a
"snapshot" of the existing and planned future TEC
software workload within NAVMAT. The study will
cover ECS software and firmware, evaluate the cri-
teria used to assign responsibilities for its devel-
opment and support, and analyze the methods used to
meet those responsibilities.

D.2.4.3 Description of Activity: The approach is to be
incremental, with initial emphasis placed on major
programs and their software. Other software will be
examined generically, as required, to meet specific
information needs.

Phase I

The 13 most involved field activities (see list below)
will be evaluated. The survey will examine their
present and anticipated future workload in ECS soft-
ware. Survey information will be taken for currently
supported systems and for those identified in Systems
Command and field activity planning documenta, Typi-
cal information sought includes:

Platform
System/subsystem
Major functions performed
Amount/size of embedded software
Amount/size of support software
Languages used
Type/cost of hardware support
Staff size and skill types
Contractor support
Facilities support and cost of operations

D-22



Phase II

After surveying the 13 field activities, the scope
of the top three to five programs at each activity
will be identified. Each of these high-impact soft-
ware systems will be examined in greater detail.
Typical additional information includes:

History of involvement (how assigned)
Related responsibilities
Impact
Cost drivers
Relationship to activity roles and missions
Relationship to technology base
Recommendations and Suggestions

The 13 Field Activities are:

FCDSSA, DN NCSC NSRDC NWC
FCDSSA, SD NOSC NTEC PME-120-3 SSF*
NADC NSWC NUSC PMTC
NATC

*Included as a field activity for the purposes
of this study

D-23



PLANNED ACTIONS AND MILESTONES

Phase I
Date

1) Letters to SYSCOMS requesting team 14 May 82
member designation

2) SYSCOM team members designated 28 May 82

3) Team meeting 1 June 82

4) Final data requirements established 18 June 82

5) Survey and data base development
completed 18 Aug 82

6) Survey data analysis completed;
initial report 1 Sept 82

Phase II

7) Designation of high-impact systems 18 Aug 82

8) Survey of high-impact systems
completed 17 Sept 82

9) Analysis of high-impact system data
completed; initial report 1 Oct 82

10) Review with selected SYSCOM sponsors

completed 22 Oct 82

11) Field activity visits completed 10 Dec 82

12) Final data analysis completed, 7 Jan 83
report completion

13) Draft recommendations 1 Feb 83

14) Briefings and final recommendations 1 Mar 83

D-24

° .° . • . . . .. . .. - . . . . .. .



D.2.5 Embedded Computer Systems Support Improvement Program

(ESIP)

D.2.5.1 Responsible Activity: HO AFLC/LOE

D.2.5.2 Scope of Initiative: This program addresses all
categories of embedded computer systems in the Air
Force (operational flight programs, electronic war-
fare, communications electronics, automatic test
equipment and aircrew training devices). It is to
focus funds and management on AFLC ECS projects that
are not weapon system specific. The objective is to
improve the support of embedded computer systems
through technical innovations, applied management
techniques, and more efficient information distri-
bution. This effort has been estimated to require
about 450 man/years spread over six years.

D.2.5.3 Description of Activity: AFLC's requirements for
support of embedded computer systems have, for the
most part, been addressed on a case-by-case basis.
AFLC has provided a viable support environment for
these systems as they arose. This system specific
approach can be thought of as the first phase of
AFLC ECS support. The numbers of ECS systems requir-
ing support in the future and resource constraints
preclude continuation of this approach, so the
Defense and Space Systems Group of TRW, Inc. was
asked to analyze ECS support requirements and sug-
gest a more effective posture. This two year effort
(FY79-80) has been completed and a number of speci-
fic recommendations have been made by TRW to HO AFLC.
The next step is to implement appropriate recommen-
dations. The implementation will form the basis of
what is to be known as the AFLC ECS Support Improve-
ment Program (ESIP). The ESIP is the second phase
of AFLC ECS support. The TRW study recommendations
often overlap or enhance existing or planned proj-
ects. A dedicated effort must be made to coordi-
nate the TRW initiatives with those of other pro-
grams. Examples of other programs are the AFLC ECS
Statement of Operational Need (SON) for Embedded
Computer Systems Software Support; PE 64740F, Com-
puter Resources Technology; PE 6372B Advanced Com-
puter Technology, and the OUSDR&E Software Technology
Initiatives.

D-25



The Embedded Computer System (ECS) Support Improve-
ment Program (ESIP) is an engineering and management
methods development program. It addresses the
various aspects of ECS support: responsiveness,
readiness, quality, and cost effectiveness. The
ESIP is the primary vehicle for applying funds and
management to AFLC ECS projects that are not weapon
system specific. The ESIP arises primarily from two
documents: the AFLC Statement of Need (SON) for
Embedded Computer System Software Support, and the
Long Range Plan for Embedded Computer Systems Support
by TRW dated Oct 81. The ESIP has been divided into
five project areas.

0 ECS Support Networks: From this project will
be developed communication technology to pro-
vide both inter and intra AFLC networks. The
networks will be used to support engineering
and management, to increase productivity and
mission responsiveness, and to reduce train-
ing and travel costs. The local and command-
wide communication links will support: (1)
The ECS change process. (2) Large data
bases. (3) Automated standardized tools.
(4) Intelligence handling. (5) Rapid repro-
gramming. (6) Software repositories. (7)
Modular Integrated Support Facilities. (8)
Training and education.

o Automation and Standardization of ECS Support

Processes: From this project area will be
developed automated and standardized tools to
support the ECS change process. This project
is necessary to improve the current practice
of using manpower intensive and non-standard
support tools, procedures, and nomenclatures.
The automated standardized ECS support tools
will be used for: (1) Management (2) Doc-
umentation (3) Analysis (4) Specification
(5) Software development (6) Testing (7)
Local development projects.

D-26



0 Extendable Integration Support Facilities (EISF):
From this project area will be developed the
technology to expand and modularize the equip-
ment capability of the AFLC Integration Support
Facilities (ISFs). The project will establish
standard ISF hardware modules, interfaces,
and architectures. It will also expand and
extend ISF capabilities to multiple systems
and multiple functions. The modular EISF
will be applied to support: (1) Combat
mission readiness. (2) Weapon system growth
and planned product improvements. (3) Mul-
tiple systems with dissimilar languages, and
input/output requirements. (4) Multiple
functions with common modules. (5) Auto-
mated standardized tools. (6) Training.

Readiness Engineering: From this project

area will be developed intelligence and data
handling capabilities to enhance or establish
support capabilities for preemptive engineer-
ing to respond to electronic threats. The
project will provide for: (1) Defining ECS
readiness related change requirements (2)
An assessment of system and subsystem vulner-
ability. (3) Selection and implementation
of changes. (4) Documentation and distribu-
tion of changes.

o Engineering Practices: From this project
area will be developed a management approach
to the support of ECS that will optimize tech-
nical skill and equipment. The project will
be accomplished through administrati~ve actions
and specific contractor tasks. The project
will investigate. (1) Developing an organ-
ization where engineers are matrixed into
other management functions. (2) Developing
ECS career progression paths. (3) Develop-
ing ECS training and professional education
through a structured program which cycles
hardware and software engineers through formal
education courses and controlled job training
programs. (4) Developing the use of stand-
ardized multi-use environmental simulations
and system dynamics models in integration sup-
port facilities and aircrew training devices.
(5) Developing supportability standards for

D-27



project will provide for: (1) Defining ECS readiness
related change requirements. (2) An assessment of sys-
tem and subsystem vulnerability. (3) Selection and
implementation of changes. (4) Documentation and dis-
tribution of changes.

0 Engineering Practices: From this project area
will be developed a management approach to the
support of ECS that will optimize technical
skill and equipment. The project will be accomp-
lished through administrative actions and specific
contractor tasks. The project will investigate.
(1) Developing an organization where engineers
are matrixed into other management functions.
(2) Developing ECS career progression paths.
(3) Developing ECS training and professional
education through a structured program which
cycles hardware and software engineers through
formal education courses and controlled job
training programs. (4) Developing the use of
standardized multi-use environmental simulations
and system dynamics models in integration support
facilities and aircrew training devices. (5)
Developing supportability standards for imple-
menting testability in the design phase and for
acquiring documentation. (6) Developing capa-
bility for multi-ECS support through use of stan-
dard interfaces and local and command-wide ECS
support software.

D.2.5.4. Index to Problems Areas: A.1, A.2, A.3, A.4, A.5, B.l,
B.2, B.3, B.4, C.l, C.2, C.3, C.4, D.l, D.2, D.3.

D-28



D.2.6 AFSC Vanguard Planning System

D.2.6.1 Responsible Activity: HQ AFSC/XR is responsible for
the entire Vanguard system. HQ AFSC/ALR is responsi-
ble for the Vanguard Functional Plan for Computer Re-
sources

D.2.6.2 Scope of Initiative: Vanguard is an integrated re-
search, development, and acquisition planning system
developed by AFSC for their use.

"A major goal of Vanguard is to integrate technology
base activities into the appropriate plans. Advanced
development activities, and some exploratory develop-
ment, can be directly tied to the mission area plans.
Basic research and the remaining exploratory develop-
ment programs are included in the technology base
functional plan." (p. 2, AFSCP 80-3.)

D.2.6.3 Description of Activity:

a. The Vanguard planner identifies the jobs that
must be done and assesses current Air Force capa-
bilities to perform them. This assessment reveals
where deficiencies exist. The descriptions of what
must be done to satisfy these deficiencies are called
development goals. The development goals are ranked
based on a combination of the job deficiency and its
importance. Listing the development goals in priority
order provides the basis for planning development
programs. This set of steps is called the analysis
phase. The planner then assembles the baseline pro-
gram, which consists of current and planned systems.
Where there are continuing deficiencies, the planner
proposes ways to correct them by recommending the
development of new systems or the modification of
existing systems. These recommendations include the
development of the technology base required by these
systems. The assemblage of approved and recommended
programs is called the synthesis phase. The planner
then prepares a briefing to present this information.
This is the final form of the Vanguard plan.

b. There are three types of Vanguard plans. The
first type deals with mission areas. Here the mission
area planner aligns various systems against needs to
determine deficiencies and proposes programs to satisfy

D-29



these deficiencies. The mission area viewpoint is not
the total answer. It does not address questions such
as commonality, compatibility, inter-operability, stan-
dardization, or austerity. Functional and force ele-
ment plans, which cut across the mission areas, are
also required. Force element plans deal with specific
categories of forces, such as missiles and bombers.

*- Functional area plans deal with the broad functions
that are required of systems, such as propulsion,
armament, avonics, etc. In contrast to mission area
and force element plans, the topics of functional
plans may change from time to time, depending upon
the degree of management attention, the problems in
the functional area, and the potential benefits from
reviewing the functional area. The combination of the
three types of plans gives an all encompassing view
and perspective to the planning process.

c. Vanguard plans are used in the budget formulation
process to give decision makers a complete perspective
by answering such questions as -

How does a program element (or a set of programelements) contribute to meeting Air Force mili-

tary needs? The analytical procedure used in
Vanguard helps to illuminate or make visible
a program element's contribution to explicitly
stated needs. Low payoff areas are identified
which might be cut back to fund areas offering
a higher return. Vanguard can help provide a
basis for more rational budgeting.

o What is the contribution of a program to other
mission areas? Many programs cut across mission
areas. For budgetary purposes, only one mission
area panel will rank a program. Vanguard planning
enables panel members to realize contributions of
a program to other mission areas.

o What will happen if we cancel or delay this
program? This program may be required for the
successful completion of other programs. By the
same token, cancelin-; this program might eliminate
the need for other pi.ograms that feed it. Because
of the way Vanguard information is structured and
presented pictorially, consequences of program
actions are readily apparent.

D-30

a--.



o How much will the program cost? Vanguard plans
show both the estimated RDT&E and acquisition
funding needed to complete the program.

o What are the key decision points and when do they
occur? Vanguard graphically displays the major
milestones in the life cycle of a system. These
range from conception through initial operational
capability (IOC) to phaseout.

o Have standardization, inter-operability, compati-
bility, and austerity been addressed? Functional
and force element plans enable these questions to
be addressed. For example, planners might need to
know if a new avionics system will fit in or is
compatible with the F-16. Using Vanguard plans,
they could determine what other changes are being
planned and check for compatibility.

d. The draft Vanguard Functional Plan for Computer Re-
sources (1982) identifies nine development goals. Each
goal is supported by a set of needs and assumptions. The
nine goals are:

o User-system interface

o Software productivity

o Education and training

o Radiation hardening

o Signal processing

o Standardization

* High Order Language

0 Security

0 Distributed systems

D.2.4 Index to Problem Areas: A.5, B.2, B.4, C.l,
C.3, C.4, D.I, D.2.

D-31



D.2.7 Post Deployment Software Support

D.2.7.1 Responsible Activity: DARCOM

D.2.7.2 Scope of Initiative: This program addresses the problem
of providing effective and economic software support for
the projected large number of Battlefield Automated Sys-
tems (BASs) which include embedded computers and which
are to be deployed by the U.S. Army. Post Deployment
Software Support (PDSS) is that part of the overall sys-
tem support to sustain, modify and improve a deployed
system's computer software as defined by the user or
his representative. Computer software includes programs,
instructions and data required to carry out computations
or control functions. It includes the associated documen-
tation. Computer software is divided into two general
categories: fielded software and support software.
Fielded software is the software that is deployed in and
with the tactical equipment. Support software is the
software that is deployed in and with the tactical equip-
ment. Support software is the software used to develop
and maintain the fielded software.

* A study of the PDSS problem was initiated in July, 1978,
when the U.S. Army Material Development and Readiness
Command (DARCOM) tasked the U.S. Army Communictions
Research and Development Command (CORADCOM) (now CECOM)
to develop an Army-wide plan for PDSS with support from
the other Army Commands.

A task force was created in August 1978 from representa-
tives of Army staff agencies, Army Commands and Army
project managers.

D.2.7.3 Description of Activity: Historically, PDSS planning by
the system project manager has been performed on a system-
by-system basis. This has resulted in a wide range of
support strategies with varying degrees of responsiveness
to the user. Although this approach may provide an opti-
mal solution on a system basis, it provides a supoptimal
solution on an Army-wide basis because of the potential
resource savings possible through the economy-of-scale
obtained by centralized support. In May 1978, DARCOM
initiated action to provide a systematic approach for
the planning of PDSS on an Army-wide basis. PDSS was
also a topic of discusison at Battlefield Automation
appraisals III and IV, 1978 and 1979, where the need
for software and software standardization was cited.

D-32



A task force of representatives from Army staff agencies,
Army commands, and Army project managers was formed to
assist CORADCOM in defining the PDSS problem, identify-
ing PDSS requirements, forming assumptions, and develop-
ing PDSS implementation alternatives, evaluation criteria,
and a selection methodology.

The PDSS Concept Plan Report: The work of the task force
resulted in the preparation of a PDSS concept Plan for
BASs dated May 1980.

The PDSS Plan includes the setting up of eleven (11) cen-
ters for performing PDSS, and a recommended policy to
improve the PDSS environment, both before and after de-
ployment. The plan primarily addresses Post Deployment
Software Support and U.S. Army Training and Doctrine Com-
mand (TRADOC) requirements for PDSS related functions. In
addition to the plan, the report documents the findings of
the PDSS task force study.

The report is structured in seven sections as follows:

Section 1. This section describes the purpose of the
PDSS study effort, the applicability of the PDSS Concept
Plan, a summary of the roles and missions for software
support of BASs by DARCOM as the Materiel Developer (MD)
and by TRADOC as the battlefield architect and principle
Combat Developer (CD). It includes the background of
the PDSS planning effort, assumptions for PDSS planning,
and guidelines for development of the PDSS Concept Plan.

Section 2. Includes a discusison of the deficiencies in
the system development process; problems due to prolifera-
tion of hardware, software, languages and PDSS organiza-
tions; other finding of the study effort, including prob-
lems in supporting the combat development process and
problems after fielding.

Section 3. Discusses the structure of software to be
supported, including the fielded subsystem and the support
subsystem. It formulates a minimum set of tasks necessary
for PDSS. It develops a software support organization and
facilities model and discusses management considerations
for implementation of PDSS.

Section 4. This section contains summary descriptions
of eight different support concept alternatives con-
sidered including:

D-33



o Decentralize by system
o Centralize by equipment function
o Centralize by Battlefield Functional Area (BFA)
at the Readiness Commands, or at the Doctrine
Commands, or at the Developing Command.

o Adopt total centralization
0 Follow a hybrid approach

Section 5. Introduces the recommended approach for PDSS
based upon a hybrid approach; identification of 11 PDSS
centers and responsible commands for those centers; iden-
tification of 91 Battlefield Automation systems (BASs)
to be supported by the centers, categorized in one of three
system categories, i.e., (1) large evolutionary systems,
(2) small evolutionary and large stable systems, and (3)
small stable systems. This section also identifies center
management responsibilities; assignment of BASs among cen-
ters; requirements for PDSS and policy recommendations for
effective PDSS.

Section 6. Is an estimate of resources needed for PDSS.
This section is not included in the PDSS Concept Plan re-
port and will be prepared separately.

Section 7. This section identifies 14 follow-on actions
for implementation of the recommended concept plan and
also identifies and briefly describes nine follow-on
efforts required to complete the PDSS study.

D.2.7.4 Index to Problem Areas: A.1, A.4, A.5, B.2, B.4, D.l,
D.2, D.3.

D-34


